
TD 1 - Differentials

Exercise 1

f : x 7−→ ‖x‖2

Rn 7→ R

Using the definition of the ‖ · ‖ for any a, ∆x ∈ Rn

f(a+ ∆x) = ‖a+ ∆x‖2 = ‖a‖2 + ‖∆x‖2 + 2〈a,∆x〉.

Under the assumption that ∆x is infinitely small it can be rewritten as

f(a+ ∆x) = ‖a‖2 + ‖∆x‖2︸ ︷︷ ︸
o(∆x)

+2〈a,∆x〉 = f(a) + 2〈a,∆x〉︸ ︷︷ ︸
df(a)(∆x)

+o(∆x).

Let us now write an explicit formula for the gradient

df(a)(∆x) = 〈∇f(a),∆x〉 ⇔ ∇f(a) = 2 (a1, a2, . . . , an)
>

= 2a.

Using partial derivatives of f the gradient can be written as

∇f(a) =

(
∂f(a)

∂x1
,
∂f(a)

∂x2
, . . . ,

∂f(a)

∂xn

)>
= 2 (a1, a2, . . . , an)

>
= 2a.

Exercise 2
a)

For any x, h ∈ Rn, we have :

f(x+ h) = ‖A(x+ h)− b‖2 = ‖Ax− b‖2 + 2〈Ax− b, Ah〉+ ‖Ah‖2

= f(x) + 〈2AT (Ax− b), h〉+ ‖Ah‖2

and since A is symmetric and ‖Ah‖2 ≤ (‖|A‖| h)2 = o(h), we obtain

∇f(x) = 2A(Ax− b)

b)

We apply theorem of differentiation of composition : if f : Rn → Rm and g : Rm → R are both differentiable
on Rn, then f ◦ g is differentiable on Rn and for any x ∈ Rn

∇(f ◦ g)(x) = Jac
g

(x)T∇f(g(x))

Applying this formula with f = ‖.‖2 and g = G, we obtain along with exercise 1 :

∇(‖.‖2 ◦G)(x) =
(

Jac
G

(x)T∇(‖.‖2)(G(x))
)

= 2 Jac
G

(x)TG(x)

Exercise 3
a)

Gradient: by symmetry of A, for any x, h ∈ Rn, we have :

f(x+ h) = (x+ h)TA(x+ h) + pT (x+ h) + c = f(x) + 2(Ax)Th+ pTh+ hTAh

= f(x) + 〈2Ax+ p, h〉+ htAh

but since htAh = o(‖h‖), we get ∇f(x) = 2Ax+ p.
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Hessian: by definition of the Hessian, ∇2f(x) := Jac∇f (x) = 2A

b)

Gradient: if we denote by G : Rn → Rm the function such that for any i ∈ J1,mK, and x ∈ Rn,
G(x)i = gi(x), we have

∑m
i=1 gi(x)2 = ‖G(x)‖2. Hence, by exercise 2, question g, we have :

∇g(x) = 2 Jac
G

(x)TG(x)

Hessian: for any p, q ∈ J1, nK, and x ∈ Rn we have

∂g

∂xp
(x) = 2

m∑
i=1

∂gi
∂xp

(x)

∂2g

∂xp∂xq
(x) = 2

m∑
i=1

∂2gi
∂xp∂xq

(x) +
∂gi
∂xp

(x)
∂gi
∂xq

(x)

= 2

m∑
i=1

∇2(gi)(x)p,q + (∇gi)(x)∇gi)(x)T )p,q

which leads to ∇2g = 2
∑m

i=1∇2(gi) +∇gi(x)∇gi(x)T

Exercise 4
a)

Let us define g : t 7→ x̄+ tu, then q = f ◦ g. Now let us use the chain rule for the derivative of composition
of the functions.

dqt(h) =

dfg(t) ◦ dgt︸︷︷︸
hu

 (h) = dfx̄+tu(hu) = ∇f(x̄+ tu)>hu.

which leads to
q′(t) = ∇f(x̄+ tu)>u.

b)

For any t, h ∈ R, h near to 0, we have :

q′(t+ h) = uT∇f(x+ (t+ h)u) = uT∇f(x+ tu+ hu)

= uT∇f(x+ tu+ hu) = uT (∇f(x+ tu) + J∇f (x+ tu)hu+ o(h))

= q′(t) + uTJ∇f (x+ tu)u h+ o(h)

but by definition of the hessian, J∇f ((x+ tu)) = ∇2f(x+ tu). Therefore,

q′′(t) = uT∇2f(x+ tu)u

c), d)

For the function q Taylor series in 0 are the following

q(t) = q(0) + tq′(0) + o(t)

for the first order approximation and

q(t) = q(0) + tq′(0) +
t2

2
q′′(0) + o(t2)
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for the second one. As far as x̄ is a local minimum it means that for any t that is small enough and for any
u

f(x̄+ tu) ≥ f(x̄)⇔ q(t) ≥ q(0).

Gradient: using the first order approximation of q(t) for this inequality we have

q(0) + tq′(0) + o(t) ≥ q(0)⇔ q′(0) ≥ 0.

Now using the result from a) we have

∀u, tq′(0) = tu>∇f(x̄) ≥ 0⇒ ∇f(x̄) = 0.

Hessian: using the second order approximation of q(t) in 0 we have

q(0) +��
�*0

tq′(0) +
t2

2
q′′(0) + o(t2) ≥ q(0).

Using the result of b) we have
∀u, q′′(0) = u>∇2f(x̄)u ≥ 0.

e)

Gradient: by the definition

∇f(x) =

(
∂f

∂x1
,
∂f

∂x2

)
= 0⇔ ∀ i ∂f

∂xi
= 0.

Hessian: let H be a symmetric matrix

H =

[
α γ
γ β

]
.

Then positive-semidefiniteness of H is on the one hand ∀u, u>Hu ≥ 0 and on the other hand ∀ i, λi ≥ 0,
where {λi} are eigenvalues of H. It is known that detH =

∏
i λi = αβ − γ2 and trH =

∑
i λi = α + β.

Then
∀ i, λi ≥ 0⇔ detH ≥ 0 & trH ≥ 0.

Exercise 5
a)

On the one hand, ∀x0 ∈ X, y0 ∈ Y {
f(x0) ≥ infx∈X f(x)

g(y0) ≥ infy∈Y g(y)

and summing it up we have

inf
x∈X

f(x) + inf
y∈Y

g(y) ≤ f(x0) + g(y0)⇔ inf
x∈X

f(x) + inf
y∈Y

g(y) ≤ inf
x∈X, y∈Y

(f(x) + g(y)) .

On the other hand, by the definition ∀ ε > 0, ∃x0 ∈ X, y0 ∈ Y :{
f(x0) < infx∈X f(x) + ε

2

g(y0) < infy∈Y g(x) + ε
2

Summing up these two inequalities we have

inf
x∈X

f(x) + inf
y∈Y

g(x) + ε > f(x0) + g(y0) > inf
x∈X, y∈Y

(f(x) + g(y)) .
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Finally, setting ε→ 0 we have

inf
x∈X

f(x) + inf
y∈Y

g(y) ≥ inf
x∈X, y∈Y

(f(x) + g(y)) .

If there are points x̄ and ȳ s.t. f(x̄) = infx∈X f(x) and g(ȳ) = infy∈Y g(y) then

inf
x∈X

f(x) + inf
y∈Y

g(y) = f(x̄) + g(ȳ) ≥ inf
x∈X, y∈Y

(f(x) + g(y)) ,

using the equality proven above we have

f(x̄) + g(ȳ) = inf
x∈X, y∈Y

(f(x) + g(y)) ,

that means that pair (x̄, ȳ) minimizes f + y on X × Y .

b)

Let us rewrite the problem in separable view
min c>x

li ≤ xi ≤ ui ∀ i ∈ {1, . . . , n}
x ∈ Rn

⇔


min

n∑
i=1

cixi

li ≤ xi ≤ ui ∀ i ∈ {1, . . . , n}
x ∈ Rn

⇔


min

n∑
i=1,ci>0

cixi +
n∑

i=1,ci<0

cixi +
n∑

i=1,ci=0

cixi

li ≤ xi ≤ ui ∀ i ∈ {1, . . . , n}
x ∈ Rn

Using the result from a) all problems for xi may be solved independently of each other. Then explicit solution
is following 

xi ∈ [li, ui] if ci = 0,

xi = li if ci > 0,

xi = ui if ci < 0

and the minimum will be equal to

min =

n∑
i=1,ci>0

cili +

n∑
i=1,ci<0

ciui

Exercise 6
a)

Let us define function ϕ : t 7→ f(y + t(x− y)). Then, from the fundamental theorem of calculus it follows

f(x)− f(y) = ϕ(1)− ϕ(0) =

∫ 1

0

ϕ′(t)dt =

∫ 1

0

(x− y)>∇f(y + t(x− y))dt

b)

Using the result of a)

f(x) = f(y) +

∫ 1

0

(x− y)>∇f(y + t(x− y))dt = f(y) +

∫ 1

0

(x− y)> [∇f(y + t(x− y)) +∇f(y)−∇f(y)] dt

= f(y) + (x− y)>∇f(y) +

∫ 1

0

(x− y)> [∇f(y + t(x− y))−∇f(y)]︸ ︷︷ ︸
≤Lt‖x−y‖

dt

≤ f(y) + (x− y)>∇f(y) + ‖x− y‖2L
∫ 1

0

tdt = f(y) + (x− y)>∇f(y) +
L

2
‖x− y‖2L
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c)

Consider a function f : x 7→ ‖x‖2. As we know from ex. 1 ∇f(a) = 2a that means that f has L-Lipschitz
gradient with L = 2. It is easy to see, that

f(x) = ‖x‖2 = ‖y + (x− y)‖2 = ‖y‖2 + ‖x− y‖2︸ ︷︷ ︸
= L

2 ‖x−y‖2

+ 2〈y, x− y〉︸ ︷︷ ︸
(x−y)>∇f(y)

.
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