TD 1 - Differentials

Exercise 1

fra—z|?
R™ — R
Using the definition of the || - || for any a, Az € R™
fla+Az) = [la+ Az|* = [lal* + [|Az|® + 2(a, Az).
Under the assumption that Az is infinitely small it can be rewritten as
fla+Az) = [|a]* + ||Az|? +2(a, Azx) = f(a) + 2(a, Az) +o(Az).
—— ———
o(Ax) df (a)(Az)
Let us now write an explicit formula for the gradient
df (a)(Az) = (Vf(a),Az) & Vf(a) = 2(a1,az,...,a,) = 2a.

Using partial derivatives of f the gradient can be written as

.
Vf(a)= (aafgf), a‘aféz),..., 88];5(1)) =2(ay,as,... 7an)T = 2a.

Exercise 2
a)
For any x,h € R", we have :
f(z+h)=|A(z+h)—b||® = ||Az — b||*> + 2(Az — b, Ah) + || Ah||?
= f(z) + (247 (Az — b), h) + || Ah||*
and since A is symmetric and || Ah||? < (||| A]|| h)? = o(h), we obtain
Vf(x)=2A(Az —b)

b)

We apply theorem of differentiation of composition : if f : R™ — R™ and g : R”™ — R are both differentiable
on R"™, then f o g is differentiable on R™ and for any = € R™

V(f 0 g)(x) = Jac(x)" V f(g(x))

Applying this formula with f = ||.||? and g = G, we obtain along with exercise 1 :

V(12 0 G)(w) = (Jac(@)V(ILIP)(G()) = 2 Jac(z)" G ()

Exercise 3
a)
Gradient: by symmetry of A, for any x, h € R™, we have :
fx+h)=(x+hTA@+h)+p" (x+h)+c= f(x)+2(Ax)"h+p"h + kT Ah

= f(z) + (2Az + p,h) + ' Ah

but since ht Ah = o(||h]|), we get V f(x) = 2Az + p.



Hessian: by definition of the Hessian, V2 f(z) := Jacys(z) = 24

b)

Gradient: if we denote by G : R® — R™ the function such that for any i € [1,m], and =z € R",
G(z); = gi(x), we have Y1, g;(z)? = ||G(z)||>. Hence, by exercise 2, question g, we have :

Vy(x) = Qch(x)TG(x)
Hessian: for any p,q € [1,n], and € R™ we have

391
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=2 Z V2(90)(@)p.q + (Vi) (@) Vi) () )p.g
i=1

which leads to V2g = 2 i V2(9:) + Vgi(z)Vgi(x)"
Exercise 4
a)

Let us define g: t — & + tu, then ¢ = f o g. Now let us use the chain rule for the derivative of composition
of the functions.

dai(h) = | dfyey © dge | (h) = dfsreu(hu) = V f(Z + tu) " hu.
h
which leads to
q(t) = Vi@ +tu) u
b)
For any ¢, h € R, h near to 0, we have :
d(t+h)=u"Vf(x+ (t+hu) =u Vix+tut+ hu)
=u"'Vf(x +tu+ hu) = u” (Vf(z+tu) + Jo s (@ + tu)hu + o(h))
=q'(t) +ul Jys(x + tu)u b+ o(h)
but by definition of the hessian, Jy ;((x + tu)) = V2 f(z + tu). Therefore,
q"(t) = u" V2 f(x + tu)u

c), d)

For the function g Taylor series in 0 are the following

q(t) = q(0) +tq'(0) + o(t)
for the first order approximation and
2

alt) = a(0) +4'(0) + 4"(0) + o(t%)



for the second one. As far as T is a local minimum it means that for any ¢ that is small enough and for any
u

f(@+tu) = f(7) < q(t) = q(0).
Gradient: using the first order approximation of ¢(t) for this inequality we have
q(0) +t¢'(0) + o(t) = q(0) < ¢'(0) = 0.
Now using the result from a) we have

Vu, tq'(0)=tu' Vf(z)>0= Vf(z)=0.

Hessian: using the second order approximation of ¢(t) in 0 we have

0,2
a(0) + 4407+ q”(0) + o) > a(0).

Using the result of b) we have
Vu, ¢"(0)=u"V2f(Z)u>0.

e)
Gradient: by the definition
of of of
=== )= v =0.

Hessian: let H be a symmetric matrix

a

H =
{7 ﬁ]

Then positive-semidefiniteness of H is on the one hand Yu, v Hu > 0 and on the other hand Vi, \; > 0,
where {);} are eigenvalues of H. It is known that det H = [[;\; = af —~* and tr H = >, \; = a + 3.
Then

Vi, i >0 detH >0& tr H > 0.

Exercise 5
a)
On the one hand, Vzg € X, yo € Y
f(xo) > infyex f(z)
9(yo) = infyey g(y)

and summing it up we have

nf f(z)+ yigg(y) < f(wo) +9(yo) & inf f(z)+ yigg(y) < oinf (f(z) +9(y))-

On the other hand, by the definition V e > 0, 3xg € X,y € Y:
f(.’l?o) <infiex f(:L‘) + %
9(yo) <infyey g(z)+ 5

Summing up these two inequalities we have

nf flz) + yigg g(x) + &> f(xo) + g(yo) > Ze)ig}gey (f(z)+9g(y))-



Finally, setting ¢ — 0 we have

Inf f(z)+ inf gy) = _inf_(F(2)+9()).

If there are points  and g s.t. f(Z) = inf,cx f(z) and g(y) = infyecy g(y) then

Jnf f@)+ inf g(y) = f@) +9(@) = _inf_ (/(2) +9().

using the equality proven above we have

f@) +g9(m= _inf (f(@)+9y)),

zeX,yey

that means that pair (Z,y) minimizes f +y on X x Y.

b)
Let us rewrite the problem in separable view
n . n n n
minc' z min Y ¢;x; min > gxi+ Y. cxit+ Y. cx;
I < < Vi 1 N i=1 o i=1,¢;>0 i=1,¢; <0 i=1,c;=0
iSeSuVied{l,...,n} li <z <u; Vie{l,...,n} Li<zi<u; Vie{l,...,n}
n
zeR r € R® xz € R”

Using the result from a) all problems for x; may be solved independently of each other. Then explicit solution
is following

x; € [1271%] if ¢; = 0,
€T; = ll if c; > 0,
Ti; = U; if¢; <0

and the minimum will be equal to

n n
min = E cly + g Ciu;

1=1,c;>0 1=1,¢;<0

Exercise 6
a)

Let us define function ¢: t — f(y + t(z — y)). Then, from the fundamental theorem of calculus it follows
1 1
£@) = £5) = o() ~ ¢0) = [t = [ (o =) VI + tla - )t
0 0

b)
Using the result of a)

f(@) = fly) + / (—9) TV f(y + tx — y))dt = f(y) + / (x— )T [VF(y+ tx — ) + V() — V() dt

= F) + () Vi) + / (x— )T [Vi(y+ tx —y)) - V()] dt

<Ltflz—yll

<)+ @ =) I + o = lL [ 1t = £6) + 0= 0)TV10) + Fle 9L




c)

Consider a function f: x + [|z]|2. As we know from ex. 1 Vf(a) = 2a that means that f has L-Lipschitz
gradient with L = 2. It is easy to see, that

f@)=llzI* = lly+ @ = p)II* =l + [lz = ylI* + 2(y. 2 —y) .
—_——  N—,

=Llz—yl2 (z-y)TVI(y)



