Proximal Method with Contractions for Smooth Convex Optimization

Nikita Doikov

Yurii Nesterov

Catholic University of Louvain, Belgium

Grenoble September 23, 2019

- 1. Proximal Method with Contractions
- 2. Application to Second-Order Methods
- 3. Numerical Example

- 1. Proximal Method with Contractions
- 2. Application to Second-Order Methods
- 3. Numerical Example

Review: Proximal Method

$$f^* = \min_{x \in \mathbb{R}^n} f(x)$$

Proximal Method:

$$x_{k+1} = \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \Big\{ f(y) + \frac{1}{2a_{k+1}} \|y - x_k\|^2 \Big\}.$$

[Rockafellar, 1976]

- ▶ If f is convex, the objective of the subproblem $h_{k+1}(y) = f(y) + \frac{1}{2a_{k+1}} ||y x_k||^2$ is strongly convex.
- Let f has Lipschitz gradient with constant L_1 . Gradient Method needs $\tilde{O}(a_{k+1}L_1)$ iterations to minimize h_{k+1} .
- ▶ It is enough to use for x_{k+1} an inexact minimizer of h_{k+1} .

[Solodov-Svaiter, 2001; Schmidt-Roux-Bach, 2011; Salzo-Villa, 2012]

Set
$$a_{k+1} = \frac{1}{L_1}$$
. Then $f(\bar{x}_k) - f^* \le \frac{L_1 ||x_0 - x^*||^2}{2k}$.

Accelerated Proximal Method

Denote $A_k \stackrel{\text{def}}{=} \sum_{i=1}^k a_i$. Two sequences: $\{x_k\}_{k \geq 0}$, and $\{v_k\}_{k \geq 0}$.

Initialization: $v_0 = x_0$.

Iterations, $k \ge 0$:

1. Put
$$y_{k+1} = \frac{a_{k+1}v_k + A_k x_k}{A_{k+1}}$$
.

2. Compute
$$x_{k+1} = \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \Big\{ f(y) + \frac{A_{k+1}}{2a_{k+1}^2} \|y - y_{k+1}\|^2 \Big\}.$$

3. Put
$$v_{k+1} = x_{k+1} + \frac{A_k}{a_{k+1}} (x_{k+1} - x_k)$$
.

Set
$$\frac{a_{k+1}^2}{A_{k+1}}=\frac{1}{L_1}.$$
 Then
$$f(x_k)-f^* \leq \frac{8L_1\|x_0-x^*\|^2}{3(k+1)^2}.$$

[Nesterov, 1983; Güler, 1992; Lin-Mairal-Harchaoui, 2015]

- A Universal Catalyst for First-Order Optimization.
- What about Second-Order Optimization?

New Algorithm: Proximal Method with Contractions

Iterations, $k \ge 0$:

1. Compute
$$v_{k+1} = \operatorname*{argmin}_{y \in \mathbb{R}^n} \Big\{ A_{k+1} f\Big(rac{a_{k+1} y + A_k x_k}{A_{k+1}} \Big) + \beta_d \big(v_k; y \big) \Big\}.$$

2. Put
$$x_{k+1} = \frac{a_{k+1}v_{k+1} + A_kx_k}{A_{k+1}}$$
.

 $\beta_d(x; y)$ is Bregman Divergence.

Basic setup: $\beta_d(x; y) = \frac{1}{2} ||y - x||^2$. Then

$$\begin{split} A_{k+1}f\Big(\tfrac{a_{k+1}y+A_kx_k}{A_{k+1}}\Big) + \tfrac{1}{2}\|y-v_k\|^2 &= A_{k+1}\bigg(f(\tilde{y}) + \tfrac{A_{k+1}}{2a_{k+1}^2}\|\tilde{y}-y_{k+1}\|^2\bigg), \\ \text{where } \tilde{y} &\equiv \tfrac{a_{k+1}y+A_kx_k}{A_{k+1}} \text{ and } y_{k+1} \equiv \tfrac{a_{k+1}v_k+A_kx_k}{A_{k+1}}. \end{split}$$

- ▶ The same iteration as in Accelerated Proximal Method.
- ▶ Generalization to arbitrary prox-function $d(\cdot)$.

Bregman Divergence

Let d(y) be a convex differentiable function. Denote **Bregman** Divergence of $d(\cdot)$, centered at x as

$$\beta_d(x;y) \stackrel{\text{def}}{=} d(y) - d(x) - \langle \nabla d(x), y - x \rangle \geq 0.$$

- ► Mirror Descent [Nemirovski-Yudin, 1979]
- ▶ Gradient Methods with Relative Smoothness [Lu-Freund-Nesterov, 2016; Bauschke-Bolte-Teboulle, 2016]

Consider regularization of convex $g(\cdot)$ by Bregman Divergence:

$$h(y) \equiv g(y) + \beta_d(v; y).$$

Main Lemma. $T = \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} h(y)$. Then

$$h(y) \geq h(T) + \beta_d(T; y).$$

Proximal Method with Contractions: the Main Idea

We want, for all $y \in \mathbb{R}^n$:

$$\beta_d(x_0; y) + A_k f(y) \geq \beta_d(v_k; y) + A_k f(x_k).$$
 (\$)

How to propagate it to k+1? Denote $a_{k+1} \stackrel{\text{def}}{=} A_{k+1} - A_k > 0$.

$$\beta_{d}(x_{0}; y) + A_{k+1}f(y) \equiv \beta_{d}(x_{0}; y) + A_{k}f(y) + a_{k+1}f(y)$$

$$(\$) \geq \beta_{d}(v_{k}; y) + A_{k}f(x_{k}) + a_{k+1}f(y)$$

$$\geq \beta_{d}(v_{k}; y) + A_{k+1}f\left(\frac{a_{k+1}y + A_{k}x_{k}}{A_{k+1}}\right) \equiv h_{k+1}(y).$$

Let $v_{k+1} = \operatorname*{argmin}_{\mathbf{y} \in \mathbb{R}^n} h_{k+1}(\mathbf{y})$. Then, by the Main Lemma,

$$h_{k+1}(y) \geq h_{k+1}(v_{k+1}) + \beta_d(v_{k+1}; y)$$

 $\geq A_{k+1}f\left(\underbrace{\frac{a_{k+1}v_{k+1} + A_kx_k}{A_{k+1}}}_{\equiv x_{k+1}}\right) + \beta_d(v_{k+1}; y).$

Proximal Method with Contractions

Iterations, $k \ge 0$:

1. Compute
$$v_{k+1} = \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \Big\{ A_{k+1} f\Big(\frac{a_{k+1} y + A_k x_k}{A_{k+1}} \Big) + \beta_d(v_k; y) \Big\}.$$

2. Put
$$x_{k+1} = \frac{a_{k+1}v_{k+1} + A_kx_k}{A_{k+1}}$$
.

Rate of convergence:

$$f(x_k) - f^* \le \frac{\beta_d(x_0; x^*)}{A_k}$$
.

Questions:

- ▶ How to choose A_k ? Prox-function $d(\cdot)$?
- ▶ How to compute v_{k+1} ?

- 1. Proximal Method with Contractions
- 2. Application to Second-Order Methods
- 3. Numerical Example

Newton Method with Cubic Regularization

$$h^* = \min_{x \in \mathbb{R}^n} h(x)$$

h is convex, with Lipschitz continuous Hessian:

$$\|\nabla^2 h(x) - \nabla^2 h(y)\| \le L_2 \|x - y\|.$$

Model of the objective

$$\Omega_{M}(x;y) \stackrel{\text{def}}{=} h(x) + \langle \nabla h(x), y - x \rangle + \frac{1}{2} \langle \nabla^{2} h(x)(y - x), y - x \rangle + \frac{M}{6} \|y - x\|^{3}$$

Iterations:

$$z_{t+1} := \underset{y \in \mathbb{R}^n}{\operatorname{argmin}} \Omega_M(z_t; y), \quad t \geq 0.$$

Newton method with Cubic regularization [Nesterov-Polyak, 2006]

Global convergence

$$h(z_t) - h^* \leq O\left(\frac{L_2R^3}{t^2}\right).$$

Computing inexact Proximal Step

Apply **Cubic Newton** to compute the Proximal Step:

$$h_{k+1}(y) \equiv A_{k+1}f\left(\frac{a_{k+1}y+A_kx_k}{A_{k+1}}\right)+\beta_d(v_k;y) \rightarrow \min_{y\in\mathbb{R}^n}$$

- Pick $d(x) = \frac{1}{3} ||x x_0||^3$.
- ▶ Uniformly convex objective: $\beta_h(x; y) \ge \frac{1}{6} ||y x||^3$. Linear rate of convergence for Cubic Newton:

$$h(z_t) - h^* \le O\left(\exp\left(-\frac{t}{\sqrt{L_2}}\right)(h(z_0) - h^*)\right).$$

▶ Let v_{k+1} be inexact Proximal Step: $\|\nabla h_{k+1}(v_{k+1})\|_* \leq \delta_{k+1}$.

Theorem

$$f(x_k) - f^* \le \frac{\left(3^{-2/3} \|x_0 - x^*\|^2 + 6^{1/3} \sum_{i=1}^k \delta_i\right)^{3/2}}{A_k}$$

 $ightharpoonup O\left(\sqrt{L_2(h_{k+1})}\log\frac{1}{\delta_{k+1}}\right)$ iterations of Cubic Newton for step k.

The choice of A_k

Contracted objective:
$$g_{k+1}(y) \equiv A_{k+1} f\left(\frac{a_{k+1}y + A_k x_k}{A_{k+1}}\right)$$
.

Derivatives

1.
$$Dg_{k+1}(y) = a_{k+1}Df\left(\frac{a_{k+1}y + A_kx_k}{A_{k+1}}\right)$$
,

2.
$$D^2g_{k+1}(y) = \frac{a_{k+1}^2}{A_{k+1}}D^2f\left(\frac{a_{k+1}y + A_k x_k}{A_{k+1}}\right)$$
,

3.
$$D^3 g_{k+1}(y) = \frac{a_{k+1}^3}{A_{k+1}^2} D^3 f\left(\frac{a_{k+1}y + A_k x_k}{A_{k+1}}\right),$$
...

Notice:
$$D^{p+1}f \leq L_p(f) \Rightarrow D^{p+1}g_{k+1} \leq \frac{a_{k+1}^{p+1}}{A_{k+1}^p}L_p(f)$$
. Therefore,

if we have
$$\left|\frac{a_{k+1}^{p+1}}{A_{k+1}^p} \leq \frac{1}{L_p(f)}\right| \qquad \text{then} \qquad L_p(g_{k+1}) \leq 1.$$

For Cubic Newton (p=2) set $A_k = \frac{k^3}{L_2(f)}$. We obtain accelerated rate of convergence: $O(\frac{1}{L^3})$.

High-Order Proximal Accelerated Scheme

Basic Method

- p = 1: Gradient Method.
- p = 2: Newton method with Cubic regularization.
- p=3: Third order methods (admits effective implementation) [Grapiglia-Nesterov, 2019].

. . .

- ▶ Prox-function: $d(x) = \frac{1}{p+1} ||x x_0||^{p+1}$. Set $A_k = \frac{k^{p+1}}{L_p(f)}$.
- $\blacktriangleright \text{ Let } \delta_k = \frac{c}{k^2}.$

Theorem

$$f(x_k) - f^* \le O\left(\frac{L_p(f)\|x_0 - x^*\|^{p+1}}{k^{p+1}}\right).$$

 $ightharpoonup O\left(\log \frac{1}{\delta_k}\right)$ steps of *Basic Method* every iteration.

- 1. Proximal Method with Contractions
- 2. Application to Second-Order Methods
- 3. Numerical Example

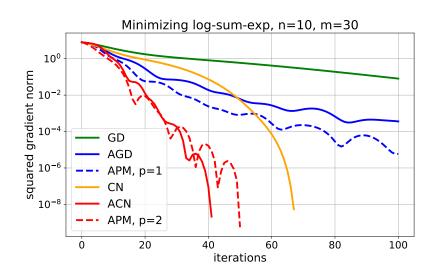
Log-sum-exp

$$\min_{x \in \mathbb{R}^n} f(x) = \log \left(\sum_{i=1}^m e^{\langle a_i, x \rangle} \right).$$

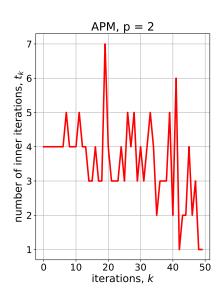
- $ightharpoonup a_1, \ldots, a_m \in \mathbb{R}^n$ given data.
- ▶ Denote $B \equiv \sum_{i=1}^{m} a_i a_i^T \succeq 0$, and use $||x|| \equiv \langle Bx, x \rangle^{1/2}$.
- ► We have

$$L_1 \leq 1, \qquad L_2 \leq 2.$$

Log-sum-exp: convergence



Log-sum-exp: inner steps



Conclusion

Two ingredients

- ▶ Bregman divergence $\beta_d(v_k; y)$.
- Contraction operator

$$f(y) \mapsto f\left(\frac{a_{k+1}y+A_kx_k}{A_{k+1}}\right).$$

Direct acceleration vs. Proximal acceleration

- ▶ The rates are: $O\left(\frac{1}{k^{p+1}}\right)$ and $\tilde{O}\left(\frac{1}{k^{p+1}}\right)$, for the methods of order $p \ge 1$.
- In practice, the number of inner steps is a constant.
- Proximal acceleration is more general useful for stochastic and distributed optimization.

Thank you for your attention!