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Review: Proximal Method

r = min f(x)

Proximal Method:

_ . 1 _ 2
X = argmin{F() + gty —

[Rockafellar, 1976]

> If f is convex, the objective of the subproblem

hir1(y) = £(y) + 52— lly — xi||? is strongly convex.

2341
» Let f has Lipschitz gradient with constant L;. Gradient
Method needs O(ax41L1) iterations to minimize hyy1.

» It is enough to use for xxy1 an inexact minimizer of hyy.
[Solodov-Svaiter, 2001; Schmidt-Roux-Bach, 2011; Salzo-Villa, 2012]

¥ ||2
Set ak1 = Lil Then f(x¢)—f* < w'
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Accelerated Proximal Method

Denote A, def Zf-‘zl aj. Two sequences: {xk}x>0, and {vk}x>o0.

Initialization: vg = xg.

Iterations, k > 0:

k41 Ve +HARXK
1. Put Yk+1 = T—}—l
2. Compute xx4+1 = argmin{f(y) A”l Hy Va2 }
yeR?
3. Put viey1 = xpp1 + 2 ak+1 (Xk+1 - Xk)

Set KL — Li Then
1

Ak 1 )
_ rx 8Ly || xo—x*||
Fl) = < 3(kt1)2

[Nesterov, 1983; Giiler, 1992; Lin-Mairal-Harchaoui, 2015]
» A Universal Catalyst for First-Order Optimization.

» What about Second-Order Optimization?
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New Algorithm: Proximal Method with Contractions
Iterations, k > 0:

1. Compute vy 1 = argmin{Aka(%qu) + 5d(vk;y)}.
yeR?

A1 Vi1 +HAkXk

2. Put xq1 = A

Ba(x;y) is Bregman Divergence.

Basic setup: Gq4(x;y) = 2Hy—X||2 Then

A ~
At (B2 ) 3y —wl? = A (70 452 17wl ).

- A A
where y = 73“%;1 K and yrp1 = 73”1)&: KXk

» The same iteration as in Accelerated Proximal Method.

» Generalization to arbitrary prox-function d(-).

6/19



Bregman Divergence

Let d(y) be a convex differentiable function. Denote Bregman
Divergence of d(-), centered at x as

Ba(x;y) def d(y) — d(x) — (Vd(x),y —x) > 0.

» Mirror Descent [Nemirovski-Yudin, 1979]

» Gradient Methods with Relative Smoothness
[Lu-Freund-Nesterov, 2016; Bauschke-Bolte-Teboulle, 2016]

Consider regularization of convex g(-) by Bregman Divergence:

h(y) = gly)+ Ba(viy).

Main Lemma. T = argmin h(y). Then
yeRn

h(y) > h(T)+Ba(T;y).
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Proximal Method with Contractions: the Main Idea

We want, for all y € R™
Ba(x0iy) + Af(y) = Ba(viiy) +Acf(xk).  (8)

How to propagate it to k + 17 Denote ax41 def Aky1 — Ak > 0.

Ba(x0;y) + Aks1f(y) Ba(x0; y) + Akf(y) + ak+1f(y)

($)
> Ba(vi;y) + Af(xk) + ak+1f(y)

> PBaviiy) + Ak+1f(%tkak> = hiqa(y)-

Let vky1 = argmin hg1(y). Then, by the Main Lemma,
yeRn

hiv1(y) > higi(visr) + Ba(Vis1: y)

dk+1Vk + Aka
> Ak+1f< 1 Xl ) + Ba(Vik+1: y)-
k+1

-~

= Xk+1
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Proximal Method with Contractions

Iterations, k > 0:

1. Compute vki1 = arg{lrgin{Ak+1f(m+zqm‘) + Bd(vk;y)}.
y€eR?

A1 Vi1 +HARXK

2. Put xq1 = y

Rate of convergence:

Fla) — fr < B,

Questions:
» How to choose A,? Prox-function d(-)?

» How to compute v 17
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Newton Method with Cubic Regularization

h* = min h(x
x€eR" ( )
h is convex, with Lipschitz continuous Hessian:

IV2h(x) = V2h(y) < Lallx —y].
Model of the objective
Qulxiy) € h(x)+ (Vh(x),y —x) + 3(T2h)(y = x),y —x)
+ My — |3

Iterations:

zry1 = argminQpy(z;y), t>0.
yeRn

Newton method with Cubic regularization [Nesterov-Polyak, 2006]

» Global convergence
h(ze) — b* < o(th’f).
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Computing inexact Proximal Step

Apply Cubic Newton to compute the Proximal Step:
_ +A _ .
hey(y) = Ak+1f(%ﬂm> + Ba(viiy) — min

> Pick d(x) = 3|Ix — x>
> Uniformly convex objective: B4(x;y) > &|ly — x||*. Linear rate
of convergence for Cubic Newton:

hze) b < O(exp(——) (h(z0) — ).

» Let vki1 be inexact Proximal Step: ||[Vhei1(vir1)]l« < Oka1-

Theorem
3/2
(323 Io—x"I2 + 63 5k, 5)
flxe) — F* < o

> O(\/Lz(hk_l'_]_) log ﬁ) iterations of Cubic Newton for step k.
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The choice of A,
— _ +A
Contracted objective: gx11(y) = Aka(ak“Aykfm).

Derivatives
1. Dgita(y) = ak+1Df(w),

Aky1

2. D2gi(y) = o D2f (et )

A1 A1
3
3 _ @1 3o A1y ARk
3. Dgialy) = 32D f( A ),

p+1

Notice: DPTIf < Ly(f) = DPtlge,; < j\ﬁ—“Lp(f). Therefore,
k+1

p+1
a 1
k41

Al ~ Lp(f)

» For Cubic Newton (p = 2) set Ay = sz(3f). We obtain

accelerated rate of convergence: O(%)

if we have then Lp(gks1) < 1.
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High-Order Proximal Accelerated Scheme

Basic Method
p = 1: Gradient Method.
p = 2: Newton method with Cubic regularization.

p = 3: Third order methods (admits effective implementation)
[Grapiglia-Nesterov, 2019].

» Prox-function: d(x) = X — XOHPH. Set Ay = kPt

> Let 6k = 5.

1
pral

Theorem

fixi) =+ < O tellodlP),

> O(Iog é) steps of Basic Method every iteration.

Lp(f)
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Log-sum-exp

min f(x) = log <f; e<a"’x>> .

i=1
» ai,...,an € R" — given data.

m
> Denote B= Y a;a] =0, and use ||x|| = (Bx, x)1/2.
i=1
» We have
L1 <1 L, < 2.

- ) -
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Log-sum-exp: convergence

Minimizing log-sum-exp, n=10, m=30
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Log-sum-exp: inner steps

APM, p =2

(o))
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Conclusion

Two ingredients

» Bregman divergence Bq(vk;y).

» Contraction operator

fly) — f(2prae),

Aks1

Direct acceleration vs. Proximal acceleration

» The rates are: O(kp—lﬂ) and O(ﬁ) for the methods of
order p > 1.
» In practice, the number of inner steps is a constant.

» Proximal acceleration is more general — useful for stochastic
and distributed optimization.

Thank you for your attention!
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