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Smooth, convex.

Convex, non-smooth.

Why non smoothness?

Sparse solution Fixed variation

Samuel Vaiter et al. Model selection with low complexity priors. Information and Inference: A 
Journal of the IMA 4.3 (2015): 230-287.

To enforce some structure of the optimal solution.

e.g. feature selection problems e.g. signal processing

Structural Risk Minimization
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R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm.
SIAM journal on control and optimization, 14(5):877–898, 1976.

Proximal gradient descent

Step 1

Step 2

forward (gradient) step.

backward (proximal) step.
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Franck Iutzeler and Jérôme Malick. Nonsmoothness in Machine Learning: specific structure, proximal 
identification, and applications. Set-Valued and Variational Analysis (2020): 1-18.
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One nice thing
Proximal methods identify a near optimal subspace.  

Theorem (Enlarged identification)

Sparsity vector

Franck Iutzeler and Jérôme Malick. Nonsmoothness in Machine Learning: specific structure, proximal 
identification, and applications. Set-Valued and Variational Analysis (2020): 1-18.
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The same =  verifies  QC.
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Contributions

– Automatic dimension reduction  

Dmitry Grishchenko, Franck Iutzeler, and Jérôme Malick. Proximal gradient methods with 
adaptive subspace sampling. Mathematics of Operations Research, 2020.
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Full gradient computation is expensive. 

Coordinate descent methods is a class of iterative methods in which only one coordinate 
(block) is updated on every iteration.

Example 1 (smooth). Example 2 (separable regularizer).

Drawback: explicit use of the separability of the regularizer.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent 
methods for minimizing a composite function. Mathematical Programming 144.1-2 (2014): 1-38.
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Randomized Subspace Descent

Olivier Fercoq and Pascal Bianchi. A coordinate-descent primal-dual algorithm with large step size and 
possibly nonseparable functions. SIAM Journal on Optimization 29.1 (2019): 100-134.
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General orthogonal projections are used!

Randomized Subspace Descent

Does it work like this? 
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Example 3.
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``Sketch’’Project
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Lemma 1

Lemma 2 Identification!
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Fixed variation sparsity = small amount of blocks of equal coordinates.

Projection on such set
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Assumption (on randomness)

Theorem (Convergence of ARPSD)
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Experiments: ARPSD with TV
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Master
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Dmitry Grishchenko, Franck Iutzeler, and Massih-Reza Amini. Sparse Asynchronous Distributed 
Learning, International Conference on Neural Information Processing 2020.
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Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on 
Machine Learning, 3584-3592
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Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on 
Machine Learning, 3584-3592
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Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on 
Machine Learning, 3584-3592
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I am going to ignore
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extended answer

but their reaction is
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Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on 
Machine Learning, 3584-3592



I am going to ignore
messages that are 

twice longer than mine!

From now on I am
going to send as short

messages as theirs.

Algorithm: SPY
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Assumption (on randomness)

Limits of sparsification
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If support is fixed the selection is i.i.d.!
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It is better if it converges, but it can diverge!
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Dmitry Grishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. Distributed 
Learning with Automatic Compression by Identification, Submitted to SIMODS.
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Adaptive mask selection can be used safely only for well-conditioned 
problems.

Ill-conditioned problem Well-conditioned problem
Proximal reconditioningProximal reconditioning

Accelerated proximal reconditioningAccelerated proximal reconditioning

A. Ivanova D. Pasechnyuk, D. Grishchenko, E. Shulgin, A. Gasnikov, V. Matyukhin. Adaptive 
catalyst for smooth convex optimization. Submitted to OMS.

Lin, Hongzhou, Julien Mairal, and Zaid Harchaoui A universal catalyst for first-order 
optimization. Advances in neural information processing systems. 2015.
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New problem

Outer loop
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linearly converges

identification (inner)
linearly converges to the optimal point

identification (global)
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+ An identification-based sparsification.

+ Subspace descent algorithm for arbitrary regularized problem.

+ Asynchronous algorithms with sparse communications.

→ Investigate (non)convex case.
→ Accelerated versions.
→ Combination with other sparsification techniques.



Thank You ForThank You For

  Your Attention!Your Attention!



Q & AQ & A
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Strategies for (A)RPSD



Practical robustness



Scaled SPY



Why not SGD
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Prox GD Prox SGD (minibatch of size 10)



Non-degeneracy



C2 and C3



1 epoch Vs C3 (Exps)



1 epoch Vs C1 (Exps)
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