

Proximal Optimization with Automatic Dimension Reduction for Large Scale Learning

Dmitry Grishchenko

Ph.D. Defence

3 November 2020

Supervised by F. IUTZELER, J. MALICK, and M.-R. AMINI

Blackjack card counting

Blackjack card counting

-1-

Blackjack card counting

Blackjack card counting

Blackjack card counting

Input: $(a_i, b_i)_{i=1,...,m} \in \mathcal{A} \times \{-1, 1\}$ - the set of observations.

Blackjack card counting

Input: $(a_i, b_i)_{i=1,...,m} \in \mathcal{A} \times \{-1, 1\}$ - the set of observations.

Output: some prediction function h(a, x) that belongs to some specific class.

Empirical Risk Minimization

ML as an Optimization Problem

Empirical Risk Minimization

 $\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ell(b_i, h(a_i, x))$

Empirical Risk Minimization

 $\min_{x \in \mathbb{R}^n} \frac{1}{m} \sum_{i=1}^m \ell(b_i, h(a_i, x))$

Learning is a compromise between accuracy and complexity

ML as an Optimization Problem

Structural Risk Minimization

ML as an Optimization Problem

Structural Risk Minimization

Why non smoothness?

Why non smoothness?

To enforce some structure of the optimal solution.

Grenoble Alpes

Why non smoothness?

To enforce some structure of the optimal solution.

Grenoble Alpes

Sparse solution $r = \| \cdot \|_1$,

e.g. feature selection problems

Samuel Vaiter et al. *Model selection with low complexity priors.* Information and Inference: A Journal of the IMA 4.3 (2015): 230-287.

- 2 -

Sparse solution $r = \| \cdot \|_1$,

e.g. feature selection problems

To enforce some structure of the optimal solution.

Grenoble Alpes

Fixed variation
$$r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|.$$

e.g. signal processing

Samuel Vaiter et al. Model selection with low complexity priors. Information and Inference: A Journal of the IMA 4.3 (2015): 230-287.

-2-

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal operator

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal operator

$$\mathbf{prox}_{r}(y) = \operatorname*{argmin}_{x \in \mathbb{R}^{n}} \left\{ r(x) + \frac{1}{2} \|x - y\|_{2}^{2} \right\}.$$

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal operator

$$\mathbf{prox}_{r}(y) = \operatorname*{argmin}_{x \in \mathbb{R}^{n}} \left\{ r(x) + \frac{1}{2} \|x - y\|_{2}^{2} \right\}.$$

This operator is well defined for convex r and has a closed form solution for relatively simple r.

Let us consider a composite optimization problem

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal operator

$$\mathbf{prox}_r(y) = \operatorname*{argmin}_{x \in \mathbb{R}^n} \left\{ r(x) + \frac{1}{2} \|x - y\|_2^2 \right\}.$$

This operator is well defined for convex r and has a closed form solution for relatively simple r.

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal gradient descent

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal gradient descent

Step 1

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal gradient descent

Step 1 $y^k = x^k - \gamma \nabla f(x)$ forward (gradient) step.

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal gradient descent

Step 1 $y^k = x^k - \gamma \nabla f(x)$ forward (gradient) step.

Step 2

Let us consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal gradient descent

- $\label{eq:step1} \begin{array}{ll} y^k = x^k \gamma \nabla f(x) & \mbox{ forward (gradient) step.} \end{array} \end{array}$
- Step 2 $x^{k+1} = \mathbf{prox}_{\gamma r}(y^k)$ backward (proximal) step.

R Tyrrell Rockafellar. *Monotone operators and the proximal point algorithm.* SIAM journal on control and optimization, 14(5):877–898, 1976.

One nice thing

One nice thing

Proximal methods identify a near optimal subspace.

Synthetic LASSO problem min $\frac{1}{2} ||Ax - b||_2^2 + \lambda_1 ||x||_1$ for random generated matrix $A \in \mathbb{R}^{100 \times 100}$ and vector $b \in \mathbb{R}^{100}$ and hyperparameter λ_1 chosen to reach 8% of density (amount of non-zero coordinates) of the final solution.

Universit

Grenoble Alpes

One nice thing

Proximal methods identify a near optimal subspace.

Sparsity vector

Let $\mathcal{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_m\}$ be a family of subspaces of \mathbb{R}^n with m elements. We define the sparsity vector on \mathcal{M} for point $x \in \mathbb{R}^n$ as the $\{0, 1\}$ -valued vector $\mathsf{S}_{\mathcal{M}}(x) \in \{0, 1\}^m$ verifying

 $(\mathsf{S}_{\mathcal{M}}(x))_{[i]} = 0$ if $x \in \mathcal{M}_i$ and 1 elsewhere.

One nice thing

Proximal methods identify a near optimal subspace.

Sparsity vector

Let $\mathcal{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_m\}$ be a family of subspaces of \mathbb{R}^n with m elements. We define the sparsity vector on \mathcal{M} for point $x \in \mathbb{R}^n$ as the $\{0, 1\}$ -valued vector $\mathsf{S}_{\mathcal{M}}(x) \in \{0, 1\}^m$ verifying

 $(\mathsf{S}_{\mathcal{M}}(x))_{[i]} = 0$ if $x \in \mathcal{M}_i$ and 1 elsewhere.

The collection $\mathcal{M} = {\mathcal{M}_i}_{1 \le i \le n}$ is the set of subspaces \mathcal{M}_i with $\operatorname{supp}(x) = [n] \setminus {i}$ for all $x \in \mathcal{M}_i$.

$$x^{\star} = \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x) + r(x)$$

One nice thing

Proximal methods identify a near optimal subspace.

Sparsity vector

Let $\mathcal{M} = \{\mathcal{M}_1, \ldots, \mathcal{M}_m\}$ be a family of subspaces of \mathbb{R}^n with m elements. We define the sparsity vector on \mathcal{M} for point $x \in \mathbb{R}^n$ as the $\{0, 1\}$ -valued vector $\mathsf{S}_{\mathcal{M}}(x) \in \{0, 1\}^m$ verifying

 $(\mathsf{S}_{\mathcal{M}}(x))_{[i]} = 0$ if $x \in \mathcal{M}_i$ and 1 elsewhere.

Theorem (Enlarged identification)

Let (u^k) be an \mathbb{R}^n -valued sequence converging almost surely to u^* and define sequence (x^k) as $x^k = \mathbf{prox}_{\gamma r}(u^k)$ and $x^* = \mathbf{prox}_{\gamma r}(u^*)$. Then (x^k) identifies some subspaces with probability one; more precisely for any $\varepsilon > 0$, with probability one, after some finite time,

$$\mathsf{S}_{\mathcal{M}}(x^{\star}) \leq \mathsf{S}_{\mathcal{M}}(x^{k}) \leq \max\left\{\mathsf{S}_{\mathcal{M}}(\mathbf{prox}_{\gamma r}(u)) \colon u \in \mathcal{B}(u^{\star},\varepsilon)\right\}.$$

The collection $\mathcal{M} = {\mathcal{M}_i}_{1 \le i \le n}$ is the set of subspaces \mathcal{M}_i with $\operatorname{supp}(x) = [n] \setminus {i}$ for all $x \in \mathcal{M}_i$.

Franck Iutzeler and Jérôme Malick. *Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications.* Set-Valued and Variational Analysis (2020): 1-18.

-4-

$$x^{\star} = \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x) + r(x)$$

One nice thing

Proximal methods identify a near optimal subspace.

Sparsity vector

Let $\mathcal{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_m\}$ be a family of subspaces of \mathbb{R}^n with *m* elements. We define the sparsity vector on \mathcal{M} for point $x \in \mathbb{R}^n$ as the $\{0, 1\}$ -valued vector $\mathsf{S}_{\mathcal{M}}(x) \in \{0, 1\}^m$ verifying

 $(\mathsf{S}_{\mathcal{M}}(x))_{[i]} = 0$ if $x \in \mathcal{M}_i$ and 1 elsewhere.

Theorem (Enlarged identification)

Let (u^k) be an \mathbb{R}^n -valued sequence converging almost surely to u^* and define sequence (x^k) as $x^k = \mathbf{prox}_{\gamma r}(u^k)$ and $x^* = \mathbf{prox}_{\gamma r}(u^*)$. Then (x^k) identifies some subspaces with probability one; more precisely for any $\varepsilon > 0$, with probability one, after some finite time,

$$\mathsf{S}_{\mathcal{M}}(x^{\star}) \leq \mathsf{S}_{\mathcal{M}}(x^{k}) \leq \max\left\{\mathsf{S}_{\mathcal{M}}(\mathbf{prox}_{\gamma r}(u)) \colon u \in \mathcal{B}(u^{\star},\varepsilon)\right\}.$$

The collection $\mathcal{M} = {\mathcal{M}_i}_{1 \le i \le n}$ is the set of subspaces \mathcal{M}_i with $\operatorname{supp}(x) = [n] \setminus {i}$ for all $x \in \mathcal{M}_i$.

$$\operatorname{supp}(x^{\star}) \subseteq \operatorname{supp}(x^{k})$$
$$\subseteq \max_{u \in \mathcal{B}(u^{\star}, \varepsilon)} \left\{ \operatorname{supp}(\mathbf{prox}_{\gamma r}(u)) \right\}.$$

Franck Iutzeler and Jérôme Malick. *Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications.* Set-Valued and Variational Analysis (2020): 1-18.

- 4 -

$$x^{\star} = \operatorname*{argmin}_{x \in \mathbb{R}^n} f(x) + r(x)$$

One nice thing

Proximal methods identify a near optimal subspace.

Sparsity vector

Let $\mathcal{M} = \{\mathcal{M}_1, \dots, \mathcal{M}_m\}$ be a family of subspaces of \mathbb{R}^n with *m* elements. We define the sparsity vector on \mathcal{M} for point $x \in \mathbb{R}^n$ as the $\{0, 1\}$ -valued vector $\mathsf{S}_{\mathcal{M}}(x) \in \{0, 1\}^m$ verifying

 $(\mathsf{S}_{\mathcal{M}}(x))_{[i]} = 0$ if $x \in \mathcal{M}_i$ and 1 elsewhere.

Theorem (Enlarged identification)

Let (u^k) be an \mathbb{R}^n -valued sequence converging almost surely to u^* and define sequence (x^k) as $x^k = \mathbf{prox}_{\gamma r}(u^k)$ and $x^* = \mathbf{prox}_{\gamma r}(u^*)$. Then (x^k) identifies some subspaces with probability one; more precisely for any $\varepsilon > 0$, with probability one, after some finite time,

$$\mathsf{S}_{\mathcal{M}}(x^{\star}) \leq \mathsf{S}_{\mathcal{M}}(x^{k}) \leq \max\left\{\mathsf{S}_{\mathcal{M}}(\mathbf{prox}_{\gamma r}(u)) \colon u \in \mathcal{B}(u^{\star},\varepsilon)\right\}.$$

The collection $\mathcal{M} = \{\mathcal{M}_i\}_{1 \leq i \leq n}$ is the set of subspaces \mathcal{M}_i with $\operatorname{supp}(x) = [n] \setminus \{i\}$ for all $x \in \mathcal{M}_i$.

$$\operatorname{supp}(x^{\star}) \subseteq \operatorname{supp}(x^{k})$$
$$\subseteq \max_{u \in \mathcal{B}(u^{\star},\varepsilon)} \left\{ \operatorname{supp}(\operatorname{\mathbf{prox}}_{\gamma r}(u)) \right\}.$$
The same = verifies QC.

Franck Iutzeler and Jérôme Malick. *Nonsmoothness in Machine Learning: specific structure, proximal identification, and applications.* Set-Valued and Variational Analysis (2020): 1-18.

- 4 -
Contributions

- Automatic dimension reduction

- Automatic dimension reduction

- Identification based sparsification

Contributions

- Automatic dimension reduction

- Identification based sparsification

- Reconditioned sparsification

- Automatic dimension reduction

Dmitry Grishchenko, Franck Iutzeler, and Jérôme Malick. *Proximal gradient methods with adaptive subspace sampling.* Mathematics of Operations Research, 2020.

In this part we consider a composite optimization problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x),$

where f is L-smooth and μ -strongly convex, and r is convex, l.s.c. and prox-easy.

Full gradient computation is expensive.

Full gradient computation is expensive.

Coordinate descent methods is a class of iterative methods in which only one coordinate (block) is updated on every iteration.

Full gradient computation is expensive.

Coordinate descent methods is a class of iterative methods in which only one coordinate (block) is updated on every iteration.

Example 1 (smooth).

$$x^{k+1} = x^k - \gamma \nabla f(x)_{[i^k]}$$

Full gradient computation is expensive.

Coordinate descent methods is a class of iterative methods in which only one coordinate (block) is updated on every iteration.

$$\begin{split} & \text{Example 1 (smooth).} \\ & x^{k+1} = x^k - \gamma \nabla f(x)_{[i^k]} \\ & \quad x^{k+1} = x^k - \gamma \nabla f(x)_{[i^k]} \\ & \quad r(x) = \sum_{i=1}^n r_i(x_{[i]}) \ \Rightarrow \ \mathbf{prox}_{\gamma r}(x)_{[i]} = \mathbf{prox}_{\gamma r_i}(x_{[i]}). \\ & \quad x^{k+1}_{[i^k]} \leftarrow \mathbf{prox}_{\gamma r_{i^k}} \left(x^k_{[i^k]} - \gamma \nabla_{[i^k]} f(x^k) \right) \end{split}$$

Full gradient computation is expensive.

Coordinate descent methods is a class of iterative methods in which only one coordinate (block) is updated on every iteration.

$$\begin{split} & \text{Example 1 (smooth).} \\ & x^{k+1} = x^k - \gamma \nabla f(x)_{[i^k]} \\ & \quad x^{k} = \sum_{i=1}^n r_i(x_{[i]}) \ \Rightarrow \ \mathbf{prox}_{\gamma r}(x)_{[i]} = \mathbf{prox}_{\gamma r_i}(x_{[i]}). \\ & \quad x^{k+1}_{[i^k]} \leftarrow \mathbf{prox}_{\gamma r_{i^k}} \left(x^k_{[i^k]} - \gamma \nabla_{[i^k]} f(x^k) \right) \end{split}$$

Drawback: explicit use of the separability of the regularizer.

Peter Richtárik and Martin Takáč. *Iteration complexity of randomized block-coordinate descent methods for minimizing a composite function.* Mathematical Programming 144.1-2 (2014): 1-38.

-7-

What if the regularizer is not separable?

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

Olivier Fercoq and Pascal Bianchi. *A coordinate-descent primal-dual algorithm with large step size and possibly nonseparable functions.* SIAM Journal on Optimization 29.1 (2019): 100-134.

- 8 -

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

$$x_{[i^k]}^{k+1} \leftarrow \mathbf{prox}_{\gamma r_{i^k}} \left(x_{[i^k]}^k - \gamma \nabla_{[i^k]} f(x^k) \right)$$

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

$$x^{k+1} = \mathbf{prox}_{\gamma r_{i^k}} \left(x_{[i^k]}^k - \gamma \nabla_{[i^k]} f(x^k) \right) + \left[x^k \right]_{\overline{i^k}}$$

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

$$x^{k+1} = \mathbf{prox}_{\gamma r} \left(\left[y^k \right]_{i^k} + \left[y^{k-1} \right]_{\overline{i^k}} \right),$$

where $y^k = x^k - \gamma \nabla f(x^k)$.

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

$$x^{k+1} = \mathbf{prox}_{\gamma r} \left(\left[y^k \right]_{i^k} + \left[y^{k-1} \right]_{\overline{i}^k} \right),$$

where $y^k = x^k - \gamma \nabla f(x^k)$.

In this reformulation the separability is not required!

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

$$\begin{aligned} x^{k+1} = \mathbf{prox}_{\gamma r} \left(\begin{bmatrix} y^k \end{bmatrix}_{i^k} + \begin{bmatrix} y^{k-1} \end{bmatrix}_{\overline{i}^k} \right), \\ \text{where } y^k = x^k - \gamma \nabla f(x^k). \end{aligned} \qquad \begin{array}{c} & & \\ & &$$

In this reformulation the separability is not required!

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

$$x^{k+1} = \mathbf{prox}_{\gamma r} \left(P\left(y^k\right) + \left(I - P\right)\left(y^{k-1}\right) \right),$$

where $y^k = x^k - \gamma \nabla f(x^k)$.

In this reformulation the separability is not required!

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

$$x^{k+1} = \mathbf{prox}_{\gamma r} \left(P\left(y^k\right) + \left(I - P\right)\left(y^{k-1}\right) \right),$$

where $y^k = x^k - \gamma \nabla f(x^k)$.

In this reformulation the separability is not required! General orthogonal projections are used!

What if the regularizer is not separable? e.g. $r = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$.

$$x^{k+1} = \mathbf{prox}_{\gamma r} \left(P\left(y^k\right) + \left(I - P\right)\left(y^{k-1}\right) \right),$$

where $y^k = x^k - \gamma \nabla f(x^k)$.

In this reformulation the separability is not required! General orthogonal projections are used! **Does it work like this?**

Example 3.

Let us consider the set of subspaces C_i such that C_i is *i*-th coordinate line. Select an orthogonal projection onto the C_i with probability $\frac{1}{n-1} \quad \forall i \in [2, n]$ and 0 for the 1-st.

Example 3.

Let us consider the set of subspaces C_i such that C_i is *i*-th coordinate line. Select an orthogonal projection onto the C_i with probability $\frac{1}{n-1} \quad \forall i \in [2, n]$ and 0 for the 1-st.

Does not work if the first coordinates of the starting and the optimal point are different.

Example 3.

Let us consider the set of subspaces C_i such that C_i is *i*-th coordinate line. Select an orthogonal projection onto the C_i with probability $\frac{1}{n-1} \quad \forall i \in [2, n]$ and 0 for the 1-st.

Does not work if the first coordinates of the starting and the optimal point are different.

Covering family of subspaces

Let $\mathcal{C} = {\mathcal{C}_i}_i$ be a family of subspaces of \mathbb{R}^n . We say that \mathcal{C} is covering if it spans the whole space, i.e. if $\sum_i \mathcal{C}_i = \mathbb{R}^n$.

Admissible Selection

Admissible Selection

Let \mathcal{C} be a covering family of subspaces of \mathbb{R}^n . A selection \mathfrak{S} is defined from the set of all subsets of \mathcal{C} to the set of the subspaces of \mathbb{R}^n as

$$\mathfrak{S}(\omega) = \sum_{j=1}^{s} \mathcal{C}_{i_j} \qquad \text{for } \omega = \{\mathcal{C}_{i_1}, \dots, \mathcal{C}_{i_s}\}.$$

The selection \mathfrak{S} is *admissible* if $\mathbb{P}[x \in \mathfrak{S}^{\perp}] < 1$ for all $x \in \mathbb{R}^n \setminus \{0\}$.

Admissible Selection

Let \mathcal{C} be a covering family of subspaces of \mathbb{R}^n . A selection \mathfrak{S} is defined from the set of all subsets of \mathcal{C} to the set of the subspaces of \mathbb{R}^n as

$$\mathfrak{S}(\omega) = \sum_{j=1}^{s} \mathcal{C}_{i_j} \qquad \text{for } \omega = \{\mathcal{C}_{i_1}, \dots, \mathcal{C}_{i_s}\}.$$

The selection \mathfrak{S} is *admissible* if $\mathbb{P}[x \in \mathfrak{S}^{\perp}] < 1$ for all $x \in \mathbb{R}^n \setminus \{0\}$.

If a selection \mathfrak{S} is admissible then $\mathsf{P} := \mathbb{E}[P_{\mathfrak{S}}]$ is a positive definite matrix.

In this case, we denote by $\lambda_{\min}(\mathsf{P}) > 0$ and $\lambda_{\max}(\mathsf{P}) \leq 1$ its minimal and maximal eigenvalues.

Algorithm 1: RPSD

Algorithm 1 Randomized Proximal Subspace Descent - RPSD

1: Input: $Q = P^{-\frac{1}{2}}$ 2: Initialize z^0 , $x^1 = \mathbf{prox}_{\gamma r}(Q^{-1}(z^0))$ 3: for k = 1, ... do 4: $y^k = Q(x^k - \gamma \nabla f(x^k))$ 5: $z^k = P_{\mathfrak{S}^k}(y^k) + (I - P_{\mathfrak{S}^k})(z^{k-1})$ 6: $x^{k+1} = \mathbf{prox}_{\gamma r}(Q^{-1}(z^k))$ 7: end for

Algorithm 1: RPSD

 ${\bf Algorithm \ 1} \ {\bf Randomized \ Proximal \ Subspace \ Descent \ - \ RPSD}$

Assumption (on randomness)

Given a covering family $\mathcal{C} = \{\mathcal{C}_i\}$ of subspaces, we consider a sequence $\mathfrak{S}^1, \mathfrak{S}^2, ..., \mathfrak{S}^k$ of admissible selections, which is i.i.d.

Assumption (on randomness)

Given a covering family $\mathcal{C} = \{\mathcal{C}_i\}$ of subspaces, we consider a sequence $\mathfrak{S}^1, \mathfrak{S}^2, ..., \mathfrak{S}^k$ of admissible selections, which is i.i.d.

Theorem (Convergence of RPSD)

For any $\gamma \in (0, 2/(\mu + L)]$, the sequence (x^k) of the iterates of RPSD converges almost surely to the minimizer x^* with rate

$$\mathbb{E}\left[\|x^{k+1} - x^{\star}\|_{2}^{2}\right] \leq \left(1 - \lambda_{\min}(\mathsf{P})\frac{2\gamma\mu L}{\mu + L}\right)^{k} C,$$

where $C = \lambda_{\max}(\mathsf{P}) \| z^0 - \mathsf{Q}(x^* - \gamma \nabla f(x^*)) \|_2^2$.

Consider the set of subspaces C_i such that C_i is *i*-th coordinate line. Consider the selection \mathfrak{S} such that $\mathbb{P}[C_i \in \mathfrak{S}] = p_i > 0$, then $\lambda_{\min}(\mathsf{P}) = \min_i p_i > 0$.

Theorem (Convergence of RPSD)

For any $\gamma \in (0, 2/(\mu + L)]$, the sequence (x^k) of the iterates of RPSD converges almost surely to the minimizer x^* with rate

$$\mathbb{E}\left[\|x^{k+1} - x^{\star}\|_{2}^{2}\right] \leq \left(1 - \lambda_{\min}(\mathsf{P})\frac{2\gamma\mu L}{\mu + L}\right)^{k} C,$$

where $C = \lambda_{\max}(\mathsf{P}) \| z^0 - \mathsf{Q}(x^* - \gamma \nabla f(x^*)) \|_2^2$.

RPSD: Proof Sketch

RPSD: Proof Sketch

Lemma 1

]

From the minimizer x^* , define the fixed points $z^* = y^* = \mathbb{Q}(x^* - \gamma \nabla f(x^*))$ of the sequences (y^k) and (z^k) . Then

$$\mathbb{E}\left[\|z^{k}-z^{\star}\|_{2}^{2}\,|\,\mathcal{F}^{k-1}\right] = \|z^{k-1}-z^{\star}\|_{2}^{2} + \|y^{k}-y^{\star}\|_{\mathsf{P}}^{2} - \|z^{k-1}-z^{\star}\|_{\mathsf{P}}^{2},$$

where $\mathcal{F}^k = \sigma(\{\mathfrak{S}_\ell\}_{\ell \leq k})$ is the filtration of the past random subspaces.

$$z^{k} = P_{\mathfrak{S}^{k}}\left(y^{k}\right) + \left(I - P_{\mathfrak{S}^{k}}\right)\left(z^{k-1}\right)$$
RPSD: Proof Sketch

Lemma 1

From the minimizer x^* , define the fixed points $z^* = y^* = \mathbb{Q}(x^* - \gamma \nabla f(x^*))$ of the sequences (y^k) and (z^k) . Then

$$\mathbb{E}\left[\|z^{k}-z^{\star}\|_{2}^{2}\,|\,\mathcal{F}^{k-1}\right] = \|z^{k-1}-z^{\star}\|_{2}^{2} + \|y^{k}-y^{\star}\|_{\mathsf{P}}^{2} - \|z^{k-1}-z^{\star}\|_{\mathsf{P}}^{2},$$

where $\mathcal{F}^k = \sigma(\{\mathfrak{S}_\ell\}_{\ell \leq k})$ is the filtration of the past random subspaces.

Lemma 2

Using the same notations as in Lemma 1

$$\|y^{k} - y^{\star}\|_{\mathsf{P}}^{2} - \|z^{k-1} - z^{\star}\|_{\mathsf{P}}^{2} \le -\lambda_{\min}(\mathsf{P})\frac{2\gamma\mu L}{\mu + L}\|z^{k-1} - z^{\star}\|_{2}^{2}.$$
-13 -

RPSD: Proof Sketch

Lemma 1

From the minimizer x^* , define the fixed points $z^* = y^* = \mathbb{Q}(x^* - \gamma \nabla f(x^*))$ of the sequences (y^k) and (z^k) . Then

$$\mathbb{E}\left[\|z^{k}-z^{\star}\|_{2}^{2}\,|\,\mathcal{F}^{k-1}\right] = \|z^{k-1}-z^{\star}\|_{2}^{2} + \|y^{k}-y^{\star}\|_{\mathsf{P}}^{2} - \|z^{k-1}-z^{\star}\|_{\mathsf{P}}^{2},$$

where $\mathcal{F}^k = \sigma(\{\mathfrak{S}_\ell\}_{\ell \leq k})$ is the filtration of the past random subspaces.

Lemma 2

Using the same notations as in Lemma 1

$$\|y^{k} - y^{\star}\|_{\mathsf{P}}^{2} - \|z^{k-1} - z^{\star}\|_{\mathsf{P}}^{2} \le -\lambda_{\min}(\mathsf{P})\frac{2\gamma\mu L}{\mu + L}\|z^{k-1} - z^{\star}\|_{2}^{2}.$$

Identification!

Examples: TV Projections

Examples: TV Projections

Fixed variation sparsity = small amount of blocks of equal coordinates.

- 14 -

Examples: TV Projections

$$r = \lambda \sum_{i=1}^{n-1} |x_{[i]} - x_{[i+1]}|$$

Fixed variation sparsity = small amount of blocks of equal coordinates.

Projection on such set

$$P_{\mathfrak{S}} = \begin{pmatrix} \frac{1}{n_{1}} & \dots & \frac{1}{n_{1}} & 0 & \dots & \dots & \dots & 0 \\ \vdots & \ddots & \vdots & \vdots & \ddots & \ddots & \ddots & \vdots \\ \frac{1}{n_{1}} & \dots & \frac{1}{n_{1}} & 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \frac{1}{n_{1}} & \dots & \frac{1}{n_{1}} & 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & \ddots & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 & \frac{1}{n-n_{s}} & \dots & \frac{1}{n-n_{s}} \\ \vdots & \ddots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\ 0 & \dots & \dots & 0 & \frac{1}{n-n_{s}} & \dots & \frac{1}{n-n_{s}} \end{pmatrix} \right\} n - n_{s}$$

Université Grenoble Alpes

Initialize
$$z^0$$
, $x^1 = \mathbf{prox}_{\gamma g}(\mathsf{Q}_0^{-1}(z^0))$, $\ell = 0$, $\mathsf{L} = \{0\}$.
for $k = 1, \dots$ do
 $y^k = \mathsf{Q}_\ell (x^k - \gamma \nabla f(x^k))$
 $z^k = P_{\mathfrak{S}^k} (y^k) + (I - P_{\mathfrak{S}^k}) (z^{k-1})$
 $x^{k+1} = \mathbf{prox}_{\gamma g} (\mathsf{Q}_\ell^{-1}(z^k))$
if an adaptation is decided **then**
 $\mathsf{L} \leftarrow \mathsf{L} \cup \{k+1\}, \ \ell \leftarrow \ell + 1$
Generate a new admissible selection
Compute $\mathsf{Q}_\ell = \mathsf{P}_\ell^{-\frac{1}{2}}$ and Q_ℓ^{-1}
Rescale $z^k \leftarrow \mathsf{Q}_\ell \mathsf{Q}_{\ell-1}^{-1} z^k$
end if
end for

Initialize
$$z^0$$
, $x^1 = \mathbf{prox}_{\gamma g}(\mathsf{Q}_0^{-1}(z^0))$, $\ell = 0$, $\mathsf{L} = \{0\}$.
for $k = 1, \dots$ do
 $y^k = \mathsf{Q}_\ell (x^k - \gamma \nabla f(x^k))$
 $z^k = P_{\mathfrak{S}^k} (y^k) + (I - P_{\mathfrak{S}^k}) (z^{k-1})$
 $x^{k+1} = \mathbf{prox}_{\gamma g} (\mathsf{Q}_\ell^{-1}(z^k))$
if an adaptation is decided **then**
 $\mathsf{L} \leftarrow \mathsf{L} \cup \{k+1\}, \ell \leftarrow \ell + 1$
Generate a new admissible selection
Compute $\mathsf{Q}_\ell = \mathsf{P}_\ell^{-\frac{1}{2}}$ and Q_ℓ^{-1}
Rescale $z^k \leftarrow \mathsf{Q}_\ell \mathsf{Q}_{\ell-1}^{-1} z^k$
end if
end for

Initialize
$$z^0$$
, $x^1 = \mathbf{prox}_{\gamma g}(\mathsf{Q}_0^{-1}(z^0))$, $\ell = 0$, $\mathsf{L} = \{0\}$.
for $k = 1, \dots$ do
 $y^k = \mathsf{Q}_\ell(x^k - \gamma \nabla f(x^k))$
 $z^k = P_{\mathfrak{S}^k}(y^k) + (I - P_{\mathfrak{S}^k})(z^{k-1})$
 $\begin{cases} (\mathcal{C}_i \cap \mathcal{M}_i) \subseteq \bigcap_j \mathcal{C}_j \\ \mathcal{C}_i + \mathcal{M}_i = \mathbb{R}^n \end{cases}$
 $x^{k+1} = \mathbf{prox}_{\gamma g}(\mathsf{Q}_\ell^{-1}(z^k))$
if an adaptation is decided **then**
 $\mathsf{L} \leftarrow \mathsf{L} \cup \{k+1\}, \ \ell \leftarrow \ell + 1$
Generate a new admissible selection
Compute $\mathsf{Q}_\ell = \mathsf{P}_\ell^{-\frac{1}{2}}$ and Q_ℓ^{-1}
Rescale $z^k \leftarrow \mathsf{Q}_\ell \mathsf{Q}_{\ell-1}^{-1} z^k$
end if
end for

Initialize
$$z^{0}$$
, $x^{1} = \mathbf{prox}_{\gamma g}(\mathsf{Q}_{0}^{-1}(z^{0})), \ell = 0, \mathsf{L} = \{0\}.$
for $k = 1, \dots$ do
 $y^{k} = \mathsf{Q}_{\ell}(x^{k} - \gamma \nabla f(x^{k}))$
 $z^{k} = P_{\mathfrak{S}^{k}}(y^{k}) + (I - P_{\mathfrak{S}^{k}})(z^{k-1})$
 $x^{k+1} = \mathbf{prox}_{\gamma g}(\mathsf{Q}_{\ell}^{-1}(z^{k}))$
if an adaptation is decided **then**
 $\mathsf{L} \leftarrow \mathsf{L} \cup \{k+1\}, \ell \leftarrow \ell + 1$
Generate a new admissible selection
Compute $\mathsf{Q}_{\ell} = \mathsf{P}_{\ell}^{-\frac{1}{2}}$ and Q_{ℓ}^{-1}
Rescale $z^{k} \leftarrow \mathsf{Q}_{\ell}\mathsf{Q}_{\ell-1}^{-1}z^{k}$
end if
end for

Initialize
$$z^0$$
, $x^1 = \mathbf{prox}_{\gamma g}(\mathsf{Q}_0^{-1}(z^0))$, $\ell = 0$, $\mathsf{L} = \{0\}$.
for $k = 1, \dots$ do
 $y^k = \mathsf{Q}_\ell (x^k - \gamma \nabla f(x^k))$
 $z^k = P_{\mathfrak{S}^k} (y^k) + (I - P_{\mathfrak{S}^k}) (z^{k-1})$
 $x^{k+1} = \mathbf{prox}_{\gamma g} (\mathsf{Q}_\ell^{-1}(z^k))$
if an adaptation is decided **then**
 $\mathsf{L} \leftarrow \mathsf{L} \cup \{k+1\}, \ \ell \leftarrow \ell + 1$
Generate a new admissible selection
Compute $\mathsf{Q}_\ell = \mathsf{P}_\ell^{-\frac{1}{2}}$ and Q_ℓ^{-1}
Rescale $z^k \leftarrow \mathsf{Q}_\ell \mathsf{Q}_{\ell-1}^{-1} z^k$
end if
end for

Initialize
$$z^0$$
, $x^1 = \mathbf{prox}_{\gamma g}(\mathsf{Q}_0^{-1}(z^0))$, $\ell = 0$, $\mathsf{L} = \{0\}$.
for $k = 1, \dots$ do
 $y^k = \mathsf{Q}_\ell (x^k - \gamma \nabla f(x^k))$
 $z^k = P_{\mathfrak{S}^k} (y^k) + (I - P_{\mathfrak{S}^k}) (z^{k-1})$
 $x^{k+1} = \mathbf{prox}_{\gamma g} (\mathsf{Q}_\ell^{-1}(z^k))$
if an adaptation is decided **then**
 $\mathsf{L} \leftarrow \mathsf{L} \cup \{k+1\}, \ell \leftarrow \ell + 1$
Generate a new admissible selection
 $\succ \text{ Compute } \mathsf{Q}_\ell = \mathsf{P}_\ell^{-\frac{1}{2}} \text{ and } \mathsf{Q}_\ell^{-1}$
Rescale $z^k \leftarrow \mathsf{Q}_\ell \mathsf{Q}_{\ell-1}^{-1} z^k$
end if
end for

Adaptation Process

Adaptation Process

Let us specify ARPSD with the following simple adaptation strategy. We take a fixed upper bound on the adaptation cost and a fixed lower bound on uniformity:

$$\|\mathsf{Q}_{\ell}\mathsf{Q}_{\ell-1}^{-1}\|_2^2 \leq \mathbf{a} \qquad \lambda_{\min}(\mathsf{P}_{\ell}) \geq \lambda.$$

Then from the rate $1 - \alpha = 1 - 2\gamma \mu L \lambda / (\mu + L)$, we can perform an adaptation every

$$\mathbf{c} = \lceil \log(\mathbf{a}) / \log((2 - \alpha) / (2 - 2\alpha)) \rceil$$

iterations, so that $\mathbf{a}(1-\alpha)^{\mathbf{c}} = (1-\alpha/2)^{\mathbf{c}}$ and $k_{\ell} = \ell \mathbf{c}$.

Adaptation Process

Assumption (on randomness)

For all k > 0, \mathfrak{S}^k is \mathcal{F}^k -measurable and admissible. Furthermore, if $k \notin \mathsf{L}$, (\mathfrak{S}^k) is independent and identically distributed on $[k_\ell, k]$. The decision to adapt or not at time k is \mathcal{F}^k -measurable, i.e. $(k_\ell)_\ell$ is a sequence of \mathcal{F}^k -stopping times.

Assumption (on randomness)

For all k > 0, \mathfrak{S}^k is \mathcal{F}^k -measurable and admissible. Furthermore, if $k \notin \mathsf{L}$, (\mathfrak{S}^k) is independent and identically distributed on $[k_\ell, k]$. The decision to adapt or not at time k is \mathcal{F}^k -measurable, i.e. $(k_\ell)_\ell$ is a sequence of \mathcal{F}^k -stopping times.

Theorem (Convergence of ARPSD)

For any $\gamma \in (0, 2/(\mu + L)]$, the sequence (x^k) of the iterates of ARPSD converges almost surely to the minimizer x^* with rate

$$\mathbb{E}\left[\|x^{k+1} - x_{\ell}^{\star}\|_{2}^{2}\right] \leq \left(1 - \frac{\lambda}{2} \frac{2\gamma \mu L}{\mu + L}\right)^{k} C.$$

where $C = \lambda_{\max}(\mathsf{P}) \| z^0 - \mathsf{Q}(x^* - \gamma \nabla f(x^*)) \|_2^2$.

Assumption (on randomness)

For all k > 0, \mathfrak{S}^k is \mathcal{F}^k -measurable and admissible. Furthermore, if $k \notin \mathsf{L}$, (\mathfrak{S}^k) is independent and identically distributed on $[k_\ell, k]$. The decision to adapt or not at time k is \mathcal{F}^k -measurable, i.e. $(k_\ell)_\ell$ is a sequence of \mathcal{F}^k -stopping times.

Theorem (Convergence of ARPSD)

For any $\gamma \in (0, 2/(\mu + L)]$, the sequence (x^k) of the iterates of ARPSD converges almost surely to the minimizer x^* with rate

$$\mathbb{E}\left[\|x^{k+1} - x_{\ell}^{\star}\|_{2}^{2}\right] \leq \left(1 - \frac{\lambda}{2} \frac{2\gamma \mu L}{\mu + L}\right)^{k} C.$$

where $C = \lambda_{\max}(\mathsf{P}) \| z^0 - \mathsf{Q}(x^* - \gamma \nabla f(x^*)) \|_2^2$.

Experiments: Inefficiency of RPSD

Logistic regression with elastic net regularizer on rcv1_train dataset ($n = 47236 \ m = 20242$).

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-y_j z_j^\top x)) + \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2 - 18 - \frac{18}{2} -$$

Experiments: ARPSD with TV

1D-TV-regularized logistic regression on a1a dataset $(n = 123 \ m = 1605)$.

where the full dataset \mathcal{D} is split onto M nonintersecting subsets \mathcal{D}_i and α_i is the proportion of examples $\frac{|\mathcal{D}_i|}{m}$.

where the full dataset \mathcal{D} is split onto M nonintersecting subsets \mathcal{D}_i and α_i is the proportion of examples $\frac{|\mathcal{D}_i|}{m}$.

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^M \alpha_i \underbrace{\left[\frac{1}{|\mathcal{D}_i|} \sum_{j \in \mathcal{D}_i} \ell(b_j, h(a_j, x)) \right]}_{f_i} + r(x),$$

where the full dataset \mathcal{D} is split onto M nonintersecting subsets \mathcal{D}_i and α_i is the proportion of examples $\frac{|\mathcal{D}_i|}{m}$.

 $z_i^k = P_{\mathfrak{S}^k}$

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^M \alpha_i \underbrace{\left[\frac{1}{|\mathcal{D}_i|} \sum_{j \in \mathcal{D}_i} \ell(b_j, h(a_j, x)) \right]}_{f_i} + r(x),$$

where the full dataset \mathcal{D} is split onto M nonintersecting subsets \mathcal{D}_i and α_i is the proportion of examples $\frac{|\mathcal{D}_i|}{m}$.

$$z^{k} = \sum_{i} \alpha_{i} z_{i}^{k}$$

$$(y_{i}^{k}) + (I - P_{\mathfrak{S}^{k}}) (z_{i}^{k-1})$$

$$-20 -$$
Bottleneck
$$Master$$

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^M \alpha_i \underbrace{\left[\frac{1}{|\mathcal{D}_i|} \sum_{j \in \mathcal{D}_i} \ell(b_j, h(a_j, x)) \right]}_{f_i} + r(x),$$

where the full dataset \mathcal{D} is split onto M nonintersecting subsets \mathcal{D}_i and α_i is the proportion of examples $\frac{|\mathcal{D}_i|}{m}$.

Contributions

- Identification based sparsification

Dmitry Grishchenko, Franck Iutzeler, and Massih-Reza Amini. *Sparse Asynchronous Distributed Learning,* International Conference on Neural Information Processing 2020.

In the next two parts we consider asynchronous distributed setup where m observations are split down over M machines, each machine i having a private subset \mathcal{D}_i of the examples

$$\min_{x \in \mathbb{R}^n} F(x) = \sum_{i=1}^M \alpha_i f_i(x) + \lambda_1 ||x||_1,$$

with $\alpha_i = |\mathcal{D}_i|/m$ being the proportion of observations locally stored in machine *i*, hence functions (f_i) are *L*-smooth and μ -strongly convex.

Algorithm: DAve-PG

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on
Machine Learning, 3584-3592-22 -

Algorithm: DAve-PG

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on
Machine Learning, 3584-3592- 22 -

Universit

Algorithm: DAve-PG

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on
Machine Learning, 3584-3592-22 -

Algorithm: DAve-PG

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on
Machine Learning, 3584-3592-22 -

Algorithm: DAve-PG

Konstantin Mishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. A Delay-
tolerant Proximal-Gradient Algorithm for Distributed Learning, International Conference on
Machine Learning, 3584-3592-22.-

Algorithm: SPY

Université Grenoble Alpes

Examples: Mask Selection

Examples: Mask Selection

 $\left[\Delta^k\right]_{\mathbf{S}^k}$

Random sparsification with $p = (p_1, ..., p_n) \in (0, 1]^n$.

$$\mathbb{P}[j \in \mathbf{S}_p^k] = p_j > 0 \quad \text{for all } j \in \{1, .., n\}.$$

Random sparsification with $p = (p_1, ..., p_n) \in (0, 1]^n$.

$$\mathbb{P}[j \in \mathbf{S}_p^k] = p_j > 0 \quad \text{for all } j \in \{1, .., n\}.$$

• p is an arbitrary probability vector.

Random sparsification with $p = (p_1, ..., p_n) \in (0, 1]^n$.

$$\mathbb{P}[j \in \mathbf{S}_p^k] = p_j > 0 \quad \text{for all } j \in \{1, ..., n\}.$$

- p is an arbitrary probability vector.
- p is a π -uniform probability vector.

Random sparsification with $p = (p_1, ..., p_n) \in (0, 1]^n$.

$$\mathbb{P}[j \in \mathbf{S}_p^k] = p_j > 0 \quad \text{for all } j \in \{1, .., n\}.$$

- p is an arbitrary probability vector.
- p is a π -uniform probability vector.
- p is a π -priority random vector w.r.t. some point x

$$\mathbb{P}\left[j \in \mathbf{S}_{\pi}^{k}\right] = \begin{cases} 1 & \text{if } j \in \text{supp}(x), \\ \pi & \text{otherwise.} \\ -23 & - \end{cases}$$

Assumption (on randomness)

The sparsity mask selectors (\mathbf{S}_p^k) are independent and identically distributed random variables. We select a coordinate in the mask as follows:

$$\mathbb{P}[j \in \mathbf{S}_p^k] = p_j > 0 \quad \text{for all } j \in \{1, ..., n\},\$$

with $p = (p_1, ..., p_n) \in (0, 1]^n$.

Assumption (on randomness)

The sparsity mask selectors (\mathbf{S}_p^k) are independent and identically distributed random variables. We select a coordinate in the mask as follows:

 $\mathbb{P}[j \in \mathbf{S}_p^k] = p_j > 0 \quad \text{for all } j \in \{1, ..., n\},\$

with $p = (p_1, ..., p_n) \in (0, 1]^n$.

Theorem (Limits of sparsification)

Take $\gamma = \frac{2}{\mu+L}$, then SPY verifies for all $k \in [k_m, k_{m+1})$

$$\mathbb{E}\left\|x^{k} - x^{\star}\right\|^{2} \leq \left(p_{\max}\left(\frac{1-\kappa_{\mathsf{P}}}{1+\kappa_{\mathsf{P}}}\right)^{2} + 1 - p_{\min}\right)^{m} \max_{i} \left\|x_{i}^{0} - x_{i}^{\star}\right\|^{2}$$

with the shifted local solutions $x_i^{\star} = x^{\star} - \gamma_i \nabla f_i(x^{\star})$.

Assumption (on randomness)

The sparsity mask selectors (\mathbf{S}_{n}^{k}) are independent and identically distributed random variables. We select a coordinate in the mask as follows:

 $\mathbb{P}[j \in \mathbf{S}_n^k] = p_j > 0 \quad \text{for all } j \in \{1, .., n\},$

with $p = (p_1, ..., p_n) \in (0, 1]^n$.

Theorem (Limits of sparsification)

Take $\gamma = \frac{2}{\mu + L}$, then SPY verifies for all $k \in [k_m, k_{m+1})$

$$\mathbb{E} \left\| x^{k} - x^{\star} \right\|^{2} \leq \left(p_{\max} \left(\frac{1 - \kappa_{\mathsf{P}}}{1 + \kappa_{\mathsf{P}}} \right)^{2} + 1 - p_{\min} \right)^{m} \max_{i} \left\| x_{i}^{0} - x_{i}^{\star} \right\|^{2}$$

he shifted local solutions $x^{\star} = x^{\star} - \gamma_{i} \nabla f_{i}(x^{\star})$.

with the shifted local solutions $x_i^{\star} = x^{\star} - \gamma_i \nabla f_i(x^{\star})$.

Assumption (on randomness)

The sparsity mask selectors (\mathbf{S}_p^k) are independent and identically distributed random variables. We select a coordinate in the mask as follows:

$$\mathbb{P}[j \in \mathbf{S}_p^k] = p_j > 0 \quad \text{for all } j \in \{1, .., n\},$$

with $p = (p_1, ..., p_n) \in (0, 1]^n$.

Theorem (Limits of sparsification)

Take $\gamma = \frac{2}{\mu+L}$, then SPY with π -uniform sampling verifies for all $k \in [k_m, k_{m+1})$

$$\mathbb{E} \|x^{k} - x^{\star}\|^{2} \leq \left(1 - \pi \frac{4\mu L}{(\mu + L)^{2}}\right)^{m} \max_{i} \|x_{i}^{0} - x_{i}^{\star}\|^{2}.$$

with the shifted local solutions $x_i^{\star} = x^{\star} - \gamma_i \nabla f_i(x^{\star})$.

Assumption (on randomness)

The sparsity mask selectors (\mathbf{S}_p^k) are independent and identically distributed random variables. We select a coordinate in the mask as follows:

$$\mathbb{P}[j \in \mathbf{S}_p^k] = p_j > 0 \quad \text{for all } j \in \{1, .., n\},\$$

with $p = (p_1, ..., p_n) \in (0, 1]^n$.

Limits of sparsification

SPY reaches linear convergence of the mean squared error in terms of epochs if

$$\frac{p_{\min}}{p_{\max}} > (1 - \gamma \mu)^2 \stackrel{\gamma = \frac{2}{\mu + L}}{\geq} \left(\frac{1 - \kappa_{\mathsf{P}}}{1 + \kappa_{\mathsf{P}}}\right)^2.$$

Experiments: Uniform Sampling

Logistic regression with elastic net regularizer on madelon dataset (n = 500 m = 2000) and M = 10 machines.

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-y_j z_j^\top x)) + \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2 - 25 - \frac{1}{2} \sum_{j=1}^m \log(1 + \exp(-y_j z_j^\top x)) + \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2$$

p is π -priority random vector w.r.t. the current iterate point x^k

$$\mathbb{P}\left[j \in \mathbf{S}_{\pi}^{k}\right] = \begin{cases} 1 & \text{if } j \in \text{supp}(x^{k}), \\ \pi & \text{otherwise.} \end{cases}$$

p is π -priority random vector w.r.t. the current iterate point x^k

$$\mathbb{P}\left[j \in \mathbf{S}_{\pi}^{k}\right] = \begin{cases} 1 & \text{if } j \in \text{supp}(x^{k}), \\ \pi & \text{otherwise.} \end{cases}$$

This selection is not i.i.d.!

p is π -priority random vector w.r.t. the current iterate point x^k

$$\mathbb{P}\left[j \in \mathbf{S}_{\pi}^{k}\right] = \begin{cases} 1 & \text{if } j \in \text{supp}(x^{k}), \\ \pi & \text{otherwise.} \end{cases}$$

This selection is not i.i.d.!

If support is fixed the selection is i.i.d.!

Logistic regression with elastic net regularizer on madelon dataset (n = 500 m = 2000) and M = 10 machines.

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-y_j z_j^\top x)) + \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2 - 26 - \frac{1}{2} \|x\|_2^2$$

It is better if it converges, but it can diverge!

Contributions

- Reconditioned sparsification

Dmitry Grishchenko, Franck Iutzeler, Jérôme Malick, and Massih-Reza Amini. *Distributed Learning with Automatic Compression by Identification,* Submitted to SIMODS.

Adaptive mask selection can be used safely only for well-conditioned problems.

A. Ivanova D. Pasechnyuk, D. Grishchenko, E. Shulgin, A. Gasnikov, V. Matyukhin. *Adaptive catalyst for smooth convex optimization.* Submitted to OMS.

Lin, Hongzhou, Julien Mairal, and Zaid Harchaoui *A universal catalyst for first-order optimization.* Advances in neural information processing systems. 2015.

i-th worker function: f_i

i-th worker function. J_i

i-th worker NEW function: $h_{i,\ell} = f_i + \frac{\rho}{2} \|\cdot -x_\ell\|_2^2$, where ℓ corresponds to the outer loop.

i-th worker function. J_i

i-th worker NEW function: $h_{i,\ell} = f_i + \frac{\rho}{2} \|\cdot -x_\ell\|_2^2$, where ℓ corresponds to the outer loop.

$$\kappa = \frac{\mu + \rho}{L + \rho} \quad \left(\geq \kappa_{\mathsf{P}} = \frac{\mu}{L} \right).$$

i-th worker function. J_i

i-th worker NEW function: $h_{i,\ell} = f_i + \frac{\rho}{2} \|\cdot -x_\ell\|_2^2$, where ℓ corresponds to the outer loop.

$$\kappa = \frac{\mu + \rho}{L + \rho} \quad \left(\geq \kappa_{\mathsf{P}} = \frac{\mu}{L} \right).$$

New problem

$$\mathbf{prox}_{F/\rho}(x_{\ell}) = \underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} \sum_{i=1}^{M} \alpha_{i} f_{i}(x) + \lambda_{1} \|x\|_{1} + \frac{\rho}{2} \|x - x_{\ell}\|_{2}^{2}.$$
$$= F(x)$$
$$-28 -$$

i-th worker function. J_i

i-th worker NEW function: $h_{i,\ell} = f_i + \frac{\rho}{2} \|\cdot -x_\ell\|_2^2$, where ℓ corresponds to the outer loop.

$$\kappa = \frac{\mu + \rho}{L + \rho} \quad \left(\geq \kappa_{\mathsf{P}} = \frac{\mu}{L} \right).$$

New problem

$$\operatorname{prox}_{F/\rho}(x_{\ell}) = \operatorname{argmin}_{x \in \mathbb{R}^{n}} \underbrace{\sum_{i=1}^{M} \alpha_{i} f_{i}(x) + \lambda_{1} \|x\|_{1}}_{=F(x)} + \frac{\rho}{2} \|x - x_{\ell}\|_{2}^{2}.$$
Outer loop
$$=F(x)$$

$$-28 - \frac{\rho}{2}$$

Initialize $x_1, n \ge c > 0$, and $\delta \in (0, 1)$.

Set
$$\rho = \frac{\kappa L - \mu}{1 - \kappa}$$
 and $\gamma \in \left(0, \frac{2}{\mu + L + 2\rho}\right]$ with $\kappa = \frac{1 - \sqrt{\pi - \alpha}}{1 + \sqrt{\pi - \alpha}}; \pi = \frac{c}{n}$ and $\alpha = \frac{c}{2n}$.

while the desired accuracy is not achieved do

Observe the support of x_{ℓ} , compute p_{ℓ} as

$$p_{j,\ell} = \begin{cases} \pi_{\ell} := \min\left(\frac{c}{|\operatorname{null}(x_{\ell})|}; 1\right) & \text{if } [x_{\ell}]_{j} = 0\\ 1 & \text{if } [x_{\ell}]_{j} \neq 0 \end{cases} \quad \text{for all } j \in \{1, \dots, n\}.$$

Compute an approximate solution of the reconditioned problem with I-SPY

$$x_{\ell+1} \approx \mathbf{prox}_{F/\rho}(x_{\ell}) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \sum_{i=1}^{M} \alpha_i \underbrace{\left(f_i(x) + \frac{\rho}{2} \|x - x_{\ell}\|_2^2\right)}_{h_{i,\ell}(x)} + r(x) \right\}$$

with p_{ℓ} and x_{ℓ} as initial point. Stopping criterion is fixed budget

$$\mathsf{M}_{\ell} = \left\lceil \frac{(1+\delta)\log(\ell)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} + \frac{\log\left(\frac{2\mu+\rho}{(1-\delta)\rho}\right)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} \right\rceil \text{ epochs.}$$

Initialize $x_1, n \ge c > 0$, and $\delta \in (0, 1)$.

Set
$$\rho = \frac{\kappa L - \mu}{1 - \kappa}$$
 and $\gamma \in \left(0, \frac{2}{\mu + L + 2\rho}\right]$ with $\kappa = \frac{1 - \sqrt{\pi - \alpha}}{1 + \sqrt{\pi - \alpha}}; \pi = \frac{c}{n}$ and $\alpha = \frac{c}{2n}$.

while the desired accuracy is not achieved do | Observe the support of x_{ℓ} , compute p_{ℓ} as

$$p_{j,\ell} = \begin{cases} \pi_{\ell} := \min\left(\frac{c}{|\operatorname{null}(x_{\ell})|}; 1\right) & \text{if } [x_{\ell}]_j = 0\\ 1 & \text{if } [x_{\ell}]_j \neq 0 \end{cases} \quad \text{for all } j \in \{1, \dots, n\}$$

Compute an approximate solution of the reconditioned problem with **I-SPY**

$$x_{\ell+1} \approx \mathbf{prox}_{F/\rho}(x_{\ell}) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \sum_{i=1}^M \alpha_i \underbrace{\left(f_i(x) + \frac{\rho}{2} \|x - x_{\ell}\|_2^2\right)}_{h_{i,\ell}(x)} + r(x) \right\}$$

with p_{ℓ} and x_{ℓ} as initial point. Stopping criterion is fixed budget

$$\mathsf{M}_{\ell} = \left\lceil \frac{(1+\delta)\log(\ell)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} + \frac{\log\left(\frac{2\mu+\rho}{(1-\delta)\rho}\right)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} \right\rceil \text{ epochs.}$$

- 29 -

end

p is π -priority random vector w.r.t. x_{ℓ}

Initialize $x_1, n \ge c > 0$, and $\delta \in (0, 1)$.

Set
$$\rho = \frac{\kappa L - \mu}{1 - \kappa}$$
 and $\gamma \in \left(0, \frac{2}{\mu + L + 2\rho}\right]$ with $\kappa = \frac{1 - \sqrt{\pi - \alpha}}{1 + \sqrt{\pi - \alpha}}; \pi = \frac{c}{n}$ and $\alpha = \frac{c}{2n}$.

while the desired accuracy is not achieved do | Observe the support of x_{ℓ} , compute p_{ℓ} as

$$p_{j,\ell} = \begin{cases} \pi_{\ell} := \min\left(\frac{c}{|\operatorname{null}(x_{\ell})|}; 1\right) & \text{if } [x_{\ell}]_j = 0\\ 1 & \text{if } [x_{\ell}]_j \neq 0 \end{cases} \quad \text{for all } j \in \{1, \dots, n\}.$$

Compute an approximate solution of the reconditioned problem with I-SPY

linearly converges

p is π -priority random vector w.r.t. x_{ℓ}

$$x_{\ell+1} \approx \mathbf{prox}_{F/\rho}(x_{\ell}) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \sum_{i=1}^M \alpha_i \underbrace{\left(f_i(x) + \frac{\rho}{2} \|x - x_{\ell}\|_2^2\right)}_{h_{i,\ell}(x)} + r(x) \right\}$$

with p_{ℓ} and x_{ℓ} as initial point. Stopping criterion is fixed budget

$$\mathsf{M}_{\ell} = \left\lceil \frac{(1+\delta)\log(\ell)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} + \frac{\log\left(\frac{2\mu+\rho}{(1-\delta)\rho}\right)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} \right\rceil \text{ epochs.}$$

end

Initialize $x_1, n \ge c > 0$, and $\delta \in (0, 1)$.

Set
$$\rho = \frac{\kappa L - \mu}{1 - \kappa}$$
 and $\gamma \in \left(0, \frac{2}{\mu + L + 2\rho}\right]$ with $\kappa = \frac{1 - \sqrt{\pi - \alpha}}{1 + \sqrt{\pi - \alpha}}; \pi = \frac{c}{n}$ and $\alpha = \frac{c}{2n}$.

while the desired accuracy is not achieved do | Observe the support of x_{ℓ} , compute p_{ℓ} as

$$p_{j,\ell} = \begin{cases} \pi_{\ell} := \min\left(\frac{c}{|\operatorname{null}(x_{\ell})|}; 1\right) & \text{if } [x_{\ell}]_j = 0\\ 1 & \text{if } [x_{\ell}]_j \neq 0 \end{cases} \quad \text{for all } j \in \{1, \ldots\}$$

Compute an approximate solution of the reconditioned problem with I-SPY

$$x_{\ell+1} \approx \mathbf{prox}_{F/\rho}(x_{\ell}) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \sum_{i=1}^M \alpha_i \underbrace{\left(f_i(x) + \frac{\rho}{2} \|x - x_{\ell}\|_2^2\right)}_{h_{i,\ell}(x)} + r(x) \right\}$$

linearly converges

p is π -priority random vector w.r.t. x_{ℓ}

., n.

- 29 -

identification (inner)

with p_{ℓ} and x_{ℓ} as initial point. Stopping criterion is fixed budget

$$\mathsf{M}_{\ell} = \left\lceil \frac{(1+\delta)\log(\ell)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} + \frac{\log\left(\frac{2\mu+\rho}{(1-\delta)\rho}\right)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} \right\rceil \text{ epochs.}$$

end

Initialize $x_1, n \ge c > 0$, and $\delta \in (0, 1)$.

Set
$$\rho = \frac{\kappa L - \mu}{1 - \kappa}$$
 and $\gamma \in \left(0, \frac{2}{\mu + L + 2\rho}\right]$ with $\kappa = \frac{1 - \sqrt{\pi - \alpha}}{1 + \sqrt{\pi - \alpha}}; \pi = \frac{c}{n}$ and $\alpha = \frac{c}{2n}$.

while the desired accuracy is not achieved do | Observe the support of x_{ℓ} , compute p_{ℓ} as

$$p_{j,\ell} = \begin{cases} \pi_{\ell} := \min\left(\frac{c}{|\operatorname{null}(x_{\ell})|}; 1\right) & \text{if } [x_{\ell}]_j = 0\\ 1 & \text{if } [x_{\ell}]_j \neq 0 \end{cases} \quad \text{for all } j \in \{1, \dots, n\}.$$

p is π -priority random vector w.r.t. x_{ℓ}

Compute an approximate solution of the reconditioned problem with I-SPY

linearly converges to the optimal point

$$x_{\ell+1} \approx \mathbf{prox}_{F/\rho}(x_{\ell}) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \sum_{i=1}^M \alpha_i \underbrace{\left(f_i(x) + \frac{\rho}{2} \|x - x_{\ell}\|_2^2\right)}_{h_{i,\ell}(x)} + r(x) \right\}$$

linearly converges

identification (inner)

Grenoble Alpes

with p_{ℓ} and x_{ℓ} as initial point. Stopping criterion is fixed budget

$$\mathsf{M}_{\ell} = \left\lceil \frac{(1+\delta)\log(\ell)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} + \frac{\log\left(\frac{2\mu+\rho}{(1-\delta)\rho}\right)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} \right\rceil \text{ epochs.}$$

$$-29 -$$

end

Initialize $x_1, n \ge c > 0$, and $\delta \in (0, 1)$.

Set
$$\rho = \frac{\kappa L - \mu}{1 - \kappa}$$
 and $\gamma \in \left(0, \frac{2}{\mu + L + 2\rho}\right]$ with $\kappa = \frac{1 - \sqrt{\pi - \alpha}}{1 + \sqrt{\pi - \alpha}}; \pi = \frac{c}{n}$ and $\alpha = \frac{c}{2n}$.

while the desired accuracy is not achieved **do** | Observe the support of x_{ℓ} , compute p_{ℓ} as

$$p_{j,\ell} = \begin{cases} \pi_{\ell} := \min\left(\frac{c}{|\operatorname{null}(x_{\ell})|}; 1\right) & \text{if } [x_{\ell}]_j = 0\\ 1 & \text{if } [x_{\ell}]_j \neq 0 \end{cases} \text{ for all } j \in \{1, \dots, n\}.$$

p is π -priority random vector w.r.t. x_{ℓ}

Compute an approximate solution of the reconditioned problem with I-SPY

linearly converges to the optimal point M

$$x_{\ell+1} \approx \mathbf{prox}_{F/\rho}(x_{\ell}) = \underset{x \in \mathbb{R}^n}{\operatorname{argmin}} \left\{ \sum_{i=1}^{M} \alpha_i \underbrace{\left(f_i(x) + \frac{\rho}{2} \|x - x_{\ell}\|_2^2\right)}_{h_{i,\ell}(x)} + r(x) \right\}$$

linearly converges

identification (inner)

Grenoble Alpes

identification (global)

with p_{ℓ} and x_{ℓ} as initial point. Stopping criterion is fixed budget

$$\mathsf{M}_{\ell} = \left\lceil \frac{(1+\delta)\log(\ell)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} + \frac{\log\left(\frac{2\mu+\rho}{(1-\delta)\rho}\right)}{\log\left(\frac{1}{1-\alpha+\pi-\pi_{\ell}}\right)} \right\rceil \text{ epochs.}$$

$$-29 -$$

Experiments: Different Budget

Lasso problem on synthetic data, M = 10 machines

 $||Ax + b||_2^2 + \lambda_1 ||x||_1.$

Experiments: What About Time?

Logistic regression with elastic net regularizer on rcv1_train dataset ($n = 47236 \ m = 20242$) and M = 10 machines.

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-y_j z_j^\top x)) + \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2 - 31$$

Experiments: What About Time?

Logistic regression with elastic net regularizer on rcv1_train dataset ($n = 47236 \ m = 20242$) and M = 10 machines.

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-y_j z_j^\top x)) + \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2 - 31$$

+ An identification-based sparsification.

+ An identification-based sparsification.

+ Subspace descent algorithm for arbitrary regularized problem.

+ An identification-based sparsification.

+ Subspace descent algorithm for arbitrary regularized problem.

+ Asynchronous algorithms with sparse communications.

+ An identification-based sparsification.

+ Subspace descent algorithm for arbitrary regularized problem.

+ Asynchronous algorithms with sparse communications.

→ Investigate (non)convex case.

+ An identification-based sparsification.

+ Subspace descent algorithm for arbitrary regularized problem.

+ Asynchronous algorithms with sparse communications.

→ Investigate (non)convex case.

→ Accelerated versions.

+ An identification-based sparsification.

+ Subspace descent algorithm for arbitrary regularized problem.

+ Asynchronous algorithms with sparse communications.

→ Investigate (non)convex case.

- → Accelerated versions.
- → Combination with other sparsification techniques.

Thank You For

Your Attention!

Practical for TV regularizer

Consider the set of artificial jumps $S = \{n_1, n_2, \ldots, n_{l-1}\}$ and denote by $\mathcal{R} = \{i \notin S : [S_{\mathcal{M}}(x^k)]_i = 0\}$ the set of possible random entries. Fix the amount of sampled elements *s* and sample "first" element \mathcal{R}_0 uniformly in $\mathcal{R} = \{\mathcal{R}_i\}_{1 \leq i \leq r}$. Select "first *s*" elements starting from \mathcal{R}_f considering the cyclic structure of the list of elements $(\mathcal{R}_{r+1} = \mathcal{R}_1)$.

If l is small enough, it will not change the sparsity property of the random projection $P_{\mathfrak{S}^k}$; however, this modification will force all the projections to be block-diagonal with blocks' ends on positions $n_1, \ldots n_{l-1}$. In contrast with jumps (x^k) that we could not control, by adding l artificial jumps, we could guarantee that each block of the $P_{\mathfrak{S}^k}$ has at most $\lceil n/l \rceil$ rows. Since every random projection has end of the block on positions $\{n_i\}_{1 \le i \le l-1}$. P_{ℓ} also has such block structure and we could split the computation of Q_{ℓ}^{-1} and Q_{ℓ} into l independent parts and could be done in parallel.

		(non-adaptive) subspace	adaptive subspace descent
		descent $RPSD$	ARPSD
Subspace family		$\mathcal{C} = \{\mathcal{C}_1, \dots, \mathcal{C}_c\}$	
Algorithm		$\begin{cases} y^{k} = \mathbf{Q} \left(x^{k} - \gamma \nabla f \left(x^{k} \right) \right) \\ z^{k} = P_{\mathfrak{S}^{k}} \left(y^{k} \right) + \left(I - P_{\mathfrak{S}^{k}} \right) \left(z^{k-1} \right) \\ x^{k+1} = \mathbf{prox}_{\gamma g} \left(\mathbf{Q}^{-1} \left(z^{k} \right) \right) \end{cases}$	
Selection	Option 1		$\mathcal{C}_i \in \mathfrak{S}^k$ with probability
	• F	$\mathcal{C}_i \in \mathfrak{S}^k$ with probability p	$\begin{cases} p & \text{if } x^{\kappa} \in \mathcal{M}_i \Leftrightarrow [S_{\mathcal{M}}(x^{\kappa})]_i = 0\\ 1 & \text{elsewhere} \end{cases}$
	Option 2		Sample s elements uniformly in
		Sample s elements	$\{\mathcal{C}_i : x^k \in \mathcal{M}_i \text{ i.e. } [S_{\mathcal{M}}(x^k)]_i = 0\}$
			and add all elements in
		uniformly in \mathcal{C}	$\{\mathcal{C}_j : x^k \notin \mathcal{M}_j \text{ i.e. } [S_{\mathcal{M}}(x^k)]_j = 1\}$

Practical robustness

$$\min_{x \in \mathbb{R}^n} \quad \frac{1}{m} \sum_{j=1}^m \log(1 + \exp(-y_j z_j^\top x)) + \lambda_1 \|x\|_1 + \frac{\lambda_2}{2} \|x\|_2^2$$

Scaled SPY

Worker i

Initialize $x_i = x_i^+ = x = \bar{x}^0$ Calculate scaled probability vector $q = \left(\frac{p_{\min}}{p_1}, \frac{p_{\min}}{p_2}, \dots, \frac{p_{\min}}{p_n}\right)$ while not interrupted by master do Receive x from master Draw sparsity mask \mathbf{S}_p as $\mathbb{P}\left[j \in \mathbf{S}_{p}\right] = p_{j}$ $[x_i^+]\mathbf{s}_p \leftarrow [q]\mathbf{s}_p * [x - \gamma \nabla f_i(x)]\mathbf{s}_p + [\mathbf{1^n} - q]\mathbf{s}_p * [x_i]\mathbf{s}_p^a$ $\Delta \leftarrow x_i^+ - x_i$ Send $[\Delta]_{\mathbf{S}_p}$ to master $[x_i]_{\mathbf{S}_p} \leftarrow [x_i^+]_{\mathbf{S}_p}$ end

^{*a*}Here we denote by $\mathbf{1}^{n} \in \mathbb{R}^{n}$ the identity vector and by * we denote the coordinate-wise vector-to-vector multiplication.

Why not SGD

Prox GD

Prox SGD (minibatch of size 10)

Synthetic LASSO problem min $\frac{1}{2} ||Ax - b||_2^2 + \lambda_1 ||x||_1$ for random generated matrix $A \in \mathbb{R}^{100 \times 100}$ and vector $b \in \mathbb{R}^{100}$ and hyperparameter λ_1 chosen to reach 15% of density (amount of non-zero coordinates) of the final solution.

Non-degeneracy

Another way to define the non-degeneracy for the problem

 $\min_{x \in \mathbb{R}^n} f(x) + r(x)$

is the following:

 $\nabla f(x^{\star}) \in \operatorname{ri} \partial r(x^{\star}).$

In case of ℓ_1 regularizer $r(x) = \lambda_1 ||x||_1$ this can be written explicitly as

 $\left|\nabla f(x^{\star})_{[j]}\right| < \lambda_1 \quad \text{for all } j \in \operatorname{supp}(x^{\star}).$

 C_2 (absolute accuracy): Run I-SPY until it finds $x_{\ell+1}$ such that

$$\|x_{\ell+1} - \mathbf{prox}_{F/\rho}(x_{\ell})\|_{2}^{2} \le \frac{(1-\delta)\rho}{(2\mu+\rho)\ell^{1+\delta}} \|x_{\ell} - \mathbf{prox}_{F/\rho}(x_{\ell})\|_{2}^{2}.$$

 C_3 (relative accuracy): Run I-SPY until it finds $x_{\ell+1}$ such that

$$\|x_{\ell+1} - \mathbf{prox}_{F/\rho}(x_{\ell})\|_{2}^{2} \le \frac{\rho}{4(2\mu+\rho)\ell^{2+2\delta}} \|x_{\ell+1} - x_{\ell}\|_{2}^{2}.$$

1 epoch Vs C3 (Exps)

Synthetic LASSO problem min $\frac{1}{2} ||Ax - b||_2^2 + \lambda_1 ||x||_1$ for random generated matrix $A \in \mathbb{R}^{10000 \times 1000}$ and vector $b \in \mathbb{R}^{10000}$ and hyperparameter λ_1 chosen to reach 1% of density (amount of non-zero coordinates) of the final solution.

1 epoch Vs C1 (Exps)

Synthetic LASSO problem min $\frac{1}{2} ||Ax - b||_2^2 + \lambda_1 ||x||_1$ for random generated matrix $A \in \mathbb{R}^{10000 \times 1000}$ and vector $b \in \mathbb{R}^{10000}$ and hyperparameter λ_1 chosen to reach 1% of density (amount of non-zero coordinates) of the final solution.