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Overview

Rule Forty-two. All persons more than a mile high tv leave the court.

Context

e Optimization algorithms: find minimizer of convex functions
e Distributed setting: several machines, without shared data

e Communications between machines: bottleneck

Results

We present a distributed version of proximal gradient decent with constant
stepsize and two-way sparse communications with linear convergence.

Model

e Distributed learning:

Car: Where are you goings
RAbficer Wirich way showld 7 g0

n observations are split over M machines

Car: That depends on where you are o
machine ¢ has a private examples subset &; >~ 8; = & — full set of examples

Hiice T dom T bEnew:

Cat: Then it docsn ¥ matter witich way o go.

e Shared prediction without moving data:
decoupling the ability to learn from
the need to store the data in a centralized way:.

M
Problem: min ;m‘ fi(z) + r(x)

m; = n;/mn the proportion of observations locally stored in machine ¢

filz) = ni > ics, {;(x) the local empirical risk estimated on machine ¢ || A

Assumptions
e On functions: all f; are L—smooth and p—strongly convex
e On regularizer: r is convex and l.s.c.

2™ — unique minimizer

Notations

Alice: How fiv{.;; &5 forever? Wikite Rabbit: Sometimes, just one second,

e For the master:

k = number of updates the master receives from any of the slaves

k1 = min {k cach machine made at least 2 updates on the mterval [/{W k }
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d¥ = time elapsed from the last update

DF = time of the penultimate update
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Sparsification of local updates

Round the neck of the bottle was a paper label, with the words ‘DRINK ME" beautifully printed on it in large letters.

Master machine asynchronously gathers sparsified delayed gradient updates from
slaves and sends them back the current point. At iteration k. this randomly drawn
subset of entries of the gradient to be computed by agent i* is called mask and is
denoted by S*. Using r(;) 18 the j-th coordinate of x € RY

. (kaf — *nyi(kaf))[.] if i = i* and j € SF D
/ a:f[]_]l otherwise
xh = Prox., me = argmin < r(z) + in — z"||?
z 27y
ok

Assumption on sparsification
The sparsity mask selectors (S*) are the only random variables:

P[j € S*] = 1if j € supp(z")

P[j" € S*] = p > 0 for all ' & supp(z")

Delays (Df)izlw v are independent of the future mask selectors {S*} .

Asynchronous Moderate Communications
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Master || Slave i

=0 + —0

Initialize Initialize x; =2 =x =7

while not converged do while not mterrupted by master do

K

Receive [Ak]sk pr from agent i =i "

[CIZ’ S\supp(z) [:C _ fyvfi@:)]S\supp(x)
QZ’ — %‘k ! + Wz[Ak]Sk Dk [x+]supp(aj) < p[:lf _ fyva(x))]Supp(aj)
zh pl”OX,W($k) + (1 — p) [xi]supp(a:)

Choose sparsity mask S* Ae—z"—x

Send z*, S* to agent i = i Send [Alg to master

7ils < [7]]s

[/

Recelve x and S from master
end end

Convergence rate

Alice could not even get her head }ﬁbucg/{ the d’éonwg y;, and even ‘zy"'ﬁg y fread would c;f;o z“/z}'ozg/z,‘ ! rﬁbzgﬁ} - poor Alice, ‘1t would be 57/'1/5?:1/ [ittle use without my shoulders.

Take v € (0,2/(u+ L)|. Then, for all k € |k,,, k1),

YppL
max ||z — @

Ellek — 2512 < [1 =2
|27 — 27| < WD)

*HQ

e Linear convergence
e Same step-size as in vanilla proximal gradient

olf M =1 and p = 1 — usual convergence rate

Identification

This time there could be WO mistake about it it was neither more nor levs than a Pig, and she &t that it would be JUITE abrsurd for her to carry it further.

Assumptions

¢ On regularizer: -_ HP=oN
r(z) = At|z[1, then prox,,(z) is the soft-treshholding operator. | ﬁ _ r

e On delays: 80D
The number of iterations between two full updates
cannot grow exponentially, i.e. k11 — k;, = o(exp(m)).
This assumption is rather mild and subsumes the usual
bounded delay assumption.

Identification result The algorithm identifies a near-optimal Support in ﬁmte
time with probability one:

3K :Vk > K, supp(a?) C supp(z”) C supp(y?)

where yZ = prox,q_.),(* — 2*) for any ¢ > 0. Furthermore, if the problem is

non-degenerate, i.e. — S 0w,V fi(z*) € ri Or(z*) then, the algorithm identifies the
optimal support with probability one:

JK :Vk > K, supp(z") = supp(z*)

Sparsity This identification result gives us two-way sparsity of algorithm in
terms of communications.
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Figure 1: Logistic regression for the rev] dataset: evolution of the time per iteration, wallclock time performance,
suboptimality vs communication, and robustness of identification.

But 7 don't want to go amonyg mad pecple, Alice remarked. Oh, you can't help that, said the Cat: we're all mad here.
P’ mad. You're mad. How do you know Tm mad?’said Alice. You must be, said the Cat, or you wouldn't have come here
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