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Overview

Context

•Optimization algorithms: find minimizer of convex functions

•Distributed setting: several machines, without shared data

•Communications between machines: bottleneck

Results

We present a distributed version of proximal gradient decent with constant

stepsize and two-way sparse communications with linear convergence.

Model

•Distributed learning:

n observations are split over M machines

machine i has a private examples subset Si
∑

Si = S – full set of examples

•Shared prediction without moving data:

decoupling the ability to learn from

the need to store the data in a centralized way.

Problem: min
x∈Rd

M∑
i=1

πifi(x) + r(x)

πi = ni/n the proportion of observations locally stored in machine i

fi(x) = 1
ni

∑
j∈Si `j(x) the local empirical risk estimated on machine i

Assumptions

•On functions: all fi are L−smooth and µ−strongly convex

•On regularizer: r is convex and l.s.c.

x? – unique minimizer

Notations

•For the master:

k = number of updates the master receives from any of the slaves

km+1 = min
{
k : each machine made at least 2 updates on the interval [km, k]

}
•For slave i:

dki = time elapsed from the last update

Dk
i = time of the penultimate update
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Sparsification of local updates

Master machine asynchronously gathers sparsified delayed gradient updates from

slaves and sends them back the current point. At iteration k, this randomly drawn

subset of entries of the gradient to be computed by agent ik is called mask and is

denoted by Sk. Using x[j] is the j-th coordinate of x ∈ Rd

xki[j] =


(
xk−D

k
i − γ∇fi(xk−D

k
i )
)

[j]
if i = ik and j ∈ Sk−D

k
i

xk−1
i[j] otherwise

xk = proxγr

(
M∑
i=1

πix
k
i

)
︸ ︷︷ ︸

:=x̄k

= arg min
z

{
r(z) +

1

2γ
‖x− x̄k‖2

}

Assumption on sparsification

The sparsity mask selectors (Sk) are the only random variables:

P[j ∈ Sk] = 1 if j ∈ supp(xk)

P[j′ ∈ Sk] = p > 0 for all j′ /∈ supp(xk)

Delays (Dk
i )i=1,..,M are independent of the future mask selectors {S`}`≥k.

Master

Initialize x̄0

while not converged do

Receive [∆k]
Sk−D

k
i

from agent i = ik

x̄k ← x̄k−1 + πi[∆
k]

Sk−D
k
i

xk ← proxγr(x̄
k)

Choose sparsity mask Sk

Send xk,Sk to agent i = ik

end

Slave i

Initialize xi = x+
i = x = x̄0

while not interrupted by master do

[x+]S\supp(x) ← [x− γ∇fi(x)]S\supp(x)

[x+]supp(x) ← p[x− γ∇fi(x))]supp(x)

+ (1− p)[xi]supp(x)

∆← x+ − x
Send [∆]S to master

[xi]S← [x+
i ]S

Receive x and S from master
end

Convergence rate

Take γ ∈ (0, 2/(µ + L)]. Then, for all k ∈ [km, km+1),

E‖xk − x?‖2 ≤
(

1− 2
γpµL

µ + L

)m
max
i=1,..,M

‖x0
i − x?i‖2

•Linear convergence

• Same step-size as in vanilla proximal gradient

• If M = 1 and p = 1 – usual convergence rate

Identification

Assumptions

•On regularizer:

r(x) = λ1‖x‖1, then proxγr(x) is the soft-treshholding operator.

•On delays:

The number of iterations between two full updates

cannot grow exponentially, i.e. km+1 − km = o(exp(m)).

This assumption is rather mild and subsumes the usual

bounded delay assumption.

Identification result The algorithm identifies a near-optimal support in finite

time with probability one:

∃K : ∀k ≥ K, supp(x?) ⊆ supp(xk) ⊆ supp(y?ε)

where y?ε = proxγ(1−ε)r(x̄
? − x?) for any ε > 0. Furthermore, if the problem is

non-degenerate, i.e. −
∑M

i=1 πi∇fi(x?) ∈ ri ∂r(x?) then, the algorithm identifies the

optimal support with probability one:

∃K : ∀k ≥ K, supp(xk) = supp(x?)

Sparsity This identification result gives us two-way sparsity of algorithm in

terms of communications.
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