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ML as an Optimization Problem gﬁé

. . . e e HUAWEI
Empirical Risk Minimization

Loss function: represents the
dlfference between two arguments.

min — ZE bz,h a;, T

reR™ M

f(l‘)
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ML as an Optimization Problem gg
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Empirical Risk Minimization
Loss function: represents the
dlfference between two arguments. . . .
Learning is a compromise between
min — Z 0 bz, h(a;,x accuracy and complexity
zeR™ M
f (fL’)
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ML as an Optimization Problem

Structural Risk Minimization

Loss function: represents the
dlfference between two arguments.

mm—Zf bz,h a;,z))+r(z)

TE€R™ M V\ Regularization
/ penalty.

(w)

S

HUAWEI

&

MOTOR
eiél



ML as an Optimization Problem

Structural Risk Minimization

Smooth convex.

N gbzah iy
o Z ()47 Q)

f(l‘)

_ Convex, non-smooth.
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ML as an Optimization Problem

Structural Risk Minimization

Smooth convex.

N gbzah iy
o Z ()47 Q)

f(ﬂc)

Why non smoothness?

_ Convex, non-smooth.
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Structural Risk Minimization

min — ZE bi, h(a;, x))+r(z)

reR™ M

4

£(@)
Why non smoothness?  Toenforce some structure of the optimal solution.

Sparse solution = - |1, Fixed variation r = Z |Ti1 — x4
e.g. feature selection problems e.g. signal processing

! Samuel Vaiter et al. Model selection with low complexity priors. Information and Inference: A
Journal of the IMA 4.3 (2015): 230-287.
9. £ MOTOR



Proximal Gradient Descent s&

. . .. . HUAWEI
Let us consider a composite optimization problem
min f(x) + r(x),
min f(z) +1(z)
where f is L-smooth and convex, and r is convex, l.s.c.
-3- &5 MZTOR
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Let us consider a composite optimization problem

min f(z) +r(z),

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal operator

, 1
prox,(y) = arguin { r(a) + 3 o ~ 13 }.
rxER™

This operator is well defined for convex r and has a closed form solution for
relatively simple r.
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Let us consider a composite optimization problem

min f(z) +r(z),

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal operator

prox,.(y) = argmin {r(az) + §||a: — y||g} . /

This operator is well defined for convex r and has a closed form solution for
relatively simple r.
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Let us consider a composite optimization problem

min f(z) +r(z),

where f is L-smooth and convex, and r is convex, l.s.c.

Proximal gradient descent

Stepl oF = F — YV £ () forward (gradient) step.

k+1

Step2 =z = proxw(yk) backward (proximal) step.

i R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm.

SIAM journal on control and optimization, 14(5):877-898, 1976.
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Identification SVA
One nice thing HUAWEI

Proximal methods identify a near optimal subspace.
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Coordinates in the support
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Synthetic LASSO problem min 1||Az — b||3 + A1 ]|z||; for random generated
matrix A € R100x100 and vector b € R and hyperparameter \; chosen to
reach 8% of density (amount of non-zero coordinates) of the final solution.
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Identification

One nice thing

Proximal methods identify a near optimal subspace.

Sparsity vector

Let M = {M;j,...,M,,} be a family of subspaces of R™ with m elements.
We define the sparsity vector on M for point x € R™ as the {0, 1}-valued vector
Sm(x) € {0,1}™ verifying

(Sm(@))y; =0 if x € M; and 1 elsewhere.
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Identification

One nice thing

Proximal methods identify a near optimal subspace.

Sparsity vector

Let M = {M;j,...,M,,} be a family of subspaces of R™ with m elements.
We define the sparsity vector on M for point x € R™ as the {0, 1}-valued vector
Sm(x) € {0,1}™ verifying

(Sm(@))y; =0 if x € M; and 1 elsewhere.

N

HUAWEI

100 -

80 1

60 -

o

40 -

o

Coordinates in the support

20 4

o

o
L

2000 4000 6000 8000 10000
Iterations

The collection M = { M, }1<i<y is the set
of subspaces M; with supp(x) = [n] \ {i}
for all x € M,;.
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One nice thing HUAWEI

100 A

r* = argmin f(z) + r(x) su

Proximal methods identify a near optimal subspace.

80

o

Sparsity vector

Let M = {M;j,...,M,,} be a family of subspaces of R™ with m elements.
We define the sparsity vector on M for point x € R™ as the {0, 1}-valued vector
Sm(x) € {0,1}™ verifying
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(Sm(@))y; =0 if x € M; and 1 elsewhere.

0 2000 4000 6000 8000 10000
Iterations

Theorem (Enlarged identification) The collection M = {M;}1<i<, is the set
Let (u*) be an R™-valued sequence converging almost surely to u* and define of subspaces M; with supp(x) = [n] \ {i}

sequence (z) as 2% = prox_,.(u*) and z* = prox,,.(u*). Then (z*) identifies for all x € M,.

some subspaces with probability one; more precisely for any € > 0, with proba-

bility one, after some finite time,

Sm(z*) < Sp(zF) < max{SM(proxw(u)):uEB(u*,e)}.

7% Franck lutzeler and Jérome Malick. Nonsmoothness in Machine Learning: specific structure, proximal

identification, and applications. Set-Valued and Variational Analysis (2020): 1-18.
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Randomized Coordinate Descent SPA
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Full gradient computation is expensive.
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Full gradient computation is expensive.

Coordinate descent methods is a class of iterative methods in which only one coordinate
(block) is updated on every iteration.
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Full gradient computation is expensive.

Coordinate descent methods is a class of iterative methods in which only one coordinate
(block) is updated on every iteration.

Example 1 (smooth).
= ok — AV f (@)
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Full gradient computation is expensive.

Coordinate descent methods is a class of iterative methods in which only one coordinate
(block) is updated on every iteration.

Example 1 (smooth).
= ok — AV f (@)

Example 2 (separable regularizer).
r(x) = Zfri(x[i]) = Pprox.,.(z)n = prox.,. ()

xﬁjﬁ]l < Prox,, (leﬁk] — ’Yv[ik]f(xk))

-5- 4| MOTOR
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Full gradient computation is expensive.

Coordinate descent methods is a class of iterative methods in which only one coordinate
(block) is updated on every iteration.

Example 1 (smooth). Example 2 (separable regularizer).
Bl _ ko | &
= AV 1) = 3 (e = prox,, (@) = prox,.,(a)
i=1
xﬁjﬁ]l < Prox,, (leﬁk] — ’Yv[ik]f(xk))

Drawback: explicit use of the separability of the regularizer.

Peter Richtarik and Martin Takac. /teration complexity of randomized block-coordinate descent
methods for minimizing a composite function. Mathematical Programming 144.1-2 (2014): 1-38.

— 5. 4| MOTOR



Randomized Subspace Descent SVA

HUAWEI

What if the reqgularizer is not separable? cg =377 |z;11 — x4

possibly nonseparable functions. SIAM Journal on Optimization 29.1 (2019): 100-134.

— 6. &4 MZTOR

1\ Olivier Fercoq and Pascal Bianchi. A coordinate-descent primal-dual algorithm with large step size and



Randomized Subspace Descent SPA

HUAWEI
What if the regularizer is not separable? e.g =377 |z;11 — x4
xﬁ}g]l ¢ prox,, (wﬁk] — ’yV[ik]f(xk))
-6- &5 MZTOR



Randomized Subspace Descent &’A

HUAWEI
What if the reqgularizer is not separable? cg =377 |z;11 — x4
T < Prox =V [ix) f (x’“)>
-6- &5 MZTOR



Randomized Subspace Descent SPA

HUAWEI
What if the regularizer is not separable? e.g =377 |z;11 — x4
.iCk—l—l — pI‘OX,YTz_k_ (Z‘lﬁk] — VV[Zk]f(xk)) + [xk]gk
-6- &5 MZTOR



Randomized Subspace Descent S?A

HUAWEI
What if the regularizer is not separable? e.g =377 |z;11 — x4
P41 = prosc, (4], + [17']10).
where y* = 28 — 4V f(zF).
-6- &5 MZTOR



Randomized Subspace Descent &i&

HUAWEI
What if the regularizer is not separable? e.g =377 |z;11 — x4
2 =prox, ([y"] . + [v"7'5)
where y* = 28 — 4V f(zF).
In this reformulation the separability is not required!
-6- &5 MZTOR



Randomized Subspace Descent SPA

HUAWEI
What if the regularizer is not separable? e.g =377 |z;11 — x4
4 = prox, ([1"], + [1],0).
AN /1
k _ .k k N /
where y* = 2% — WVf(ZB ) Two orthogonal projections
onto orthogonal spaces!

In this reformulation the separability is not required!

-6- &5 MZTOR



Randomized Subspace Descent &2

HUAWEI
What if the regularizer is not separable? e.g =377 |z;11 — x4
gt = prox., (P (yk) + (I — P) (yk_l)) :
where y* = 28 — 4V f(zF).
In this reformulation the separability is not required!
-6- &5 MZTOR



Randomized Subspace Descent s&

HUAWEI
What if the reqgularizer is not separable? cg =377 |z;11 — x4
2" = prox,, (P (y*) + (I - P) (y*')).
where y* = 28 — 4V f(zF).
In this reformulation the separability is not required!
General orthogonal projections are used!
-6- &5 MZTOR



Randomized Subspace Descent su

HUAWEI
What if the reqgularizer is not separable? cg =377 |z;11 — x4
gl = prox., (P (yk) + (I — P) (yk_l)) :
where y* = 28 — 4V f(zF).
In this reformulation the separability is not required!
General orthogonal projections are used!
Does it work like this?
-6- &5 MZTOR



Examples: Subspaces S’A
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Example 3.

Let us consider the set of subspaces C; such that C; is i-th coordinate line.
Select an orthogonal projection onto the C; with probability ﬁ Vi € [2,n] and
0 for the 1-st.

-7- &4 MZTOR



Examples: Subspaces SVA

HUAWEI
Example 3.

Let us consider the set of subspaces C; such that C; is i-th coordinate line.
Select an orthogonal projection onto the C; with probability ﬁ Vi € [2,n] and
0 for the 1-st.

Does not work if the first coordinates of the starting and the optimal point
are different.

7 5,/ MOTOR
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Example 3.

Let us consider the set of subspaces C; such that C; is i-th coordinate line.
Select an orthogonal projection onto the C; with probability ﬁ Vi € [2,n] and
0 for the 1-st.

Does not work if the first coordinates of the starting and the optimal point
are different.

Covering family of subspaces

Let C = {C;}; be a family of subspaces of R"™. We say that C is covering if
it spans the whole space, i.e. if > . C; = R".

-7- &4 MZTOR



Admissible Selection S’A
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Let C be a covering family of subspaces of R™. A selection G is defined from
the set of all subsets of C to the set of the subspaces of R™ as

Sw) =) C for w = {Ci,,...,C;.}.
j=1

The selection & is admissible if Plx € &1] < 1 for all x € R™ \ {0}.

-8- &4 MZTOR
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Let C be a covering family of subspaces of R™. A selection G is defined from
the set of all subsets of C to the set of the subspaces of R™ as

Sw) =) C for w = {Ci,,...,C;.}.
j=1

The selection & is admissible if Plx € &1] < 1 for all x € R™ \ {0}.

If a selection & is admissible then P := E|Pg] is a positive definite matrix.

In this case, we denote by Apnin(P) > 0 and Apax(P) < 1 its minimal and
maximal eigenvalues.

-8- &4 MZTOR
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Algorithm 1 Randomized Proximal Subspace Descent - RPSD
1: Input: Q = P2
2: Initialize 2%, ' = prox.,.(Q'(2"))
3: for k=1,... do

£ yF=Q ek — VS (2F))

5

6

7

2% = Pgr (y*) + (I — Per) (2°71)
P = prox,, (@1 (24))
. end for

-9- &4 MZTOR
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Algorithm 1 Randomized Proximal Subspace Descent - RPSD
1: Input: Q = P2
2: Initialize 2%, ' = prox.,.(Q'(2"))
3: for k=1,... do
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RPSD: Convergence Result SVA

Assumption (on randomness) FILAWES
Given a covering family C = {C;} of subspaces, we consider a sequence
S, &2, .., 6% of admissible selections, which is i.i.d.
-10- &5 MZTOR



RPSD: Convergence Result S’A

HUAWEI

Assumption (on randomness)

Given a covering family C = {C;} of subspaces, we consider a sequence
S, &2, .., 6% of admissible selections, which is i.i.d.

Theorem (Convergence of RPSD)

For any v € (0,2/(p+L)], the sequence (x*) of the iterates of RPSD converges
almost surely to the minimizer x* with rate

k
K [||:z:"“+“L — :z:*H%] < (1 — )\min(P)M) C,
- w+ L

where C' = Apax(P)||2Y — Q(z* — 4V f(z*))]]5.

-10- &5 MZTOR



RPSD: Convergence Result SPA

HUAWEI

Consider the set of subspaces C; such that C; is ¢-th coordinate line. Consider
the selection & such that P[C; € &] = p; > 0, then Ay, (P) = min; p; > 0.

Theorem (Convergence of RPSD)

For any v € (0,2/(p+L)], the sequence (x*) of the iterates of RPSD converges
almost surely to the minimizer x* with rate

k
K [||:z:"“+“L — :z:*H%] < (1 — )\min(P)M) C,
- w+ L

where C' = Apax(P)||2Y — Q(z* — 4V f(z*))]]5.

-10- &5 MZTOR
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Lemma 1 HUAWEI

From the minimizer z*, define the fixed points z* = y* = Q (z* — yV f (z*))
of the sequences (y*) and (2*). Then

E[ll2" — 22| 7" = 1570 = 2l + lly® = y*lle — 12" = 27IIB,

where F* = o({G,},<k) is the filtration of the past random subspaces.

2k = Pai (yk) + (I — Pgr) (zk_l)

-11- &4 MZTOR
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Lemma 1 HUAWEI

From the minimizer z*, define the fixed points z* = y* = Q (z* — yV f (z*))
of the sequences (y*) and (2*). Then

E[ll2" — 22| 7" = 1570 = 2l + lly® = y*lle — 12" = 27IIB,

where F* = o({G,},<k) is the filtration of the past random subspaces.

Lemma?2

Using the same notations as in Lemma 1

_ 29ul |
ly" =y I3 = 12" = 2[R < —Amin(P)WrLHZ’“ =23

-11- &4 MZTOR




RPSD: Proof Sketch SVA

HUAWEI

Lemmal

From the minimizer z*, define the fixed points z* = y* = Q (z* — yV f (z*))
of the sequences (y*) and (2*). Then

E[ll2" — 22| 7" = 1570 = 2l + lly® = y*lle — 12" = 27IIB,

where F* = o({G,},<k) is the filtration of the past random subspaces.

Lemma?2 Identification!

Using the same notations as in Lemma 1

2vuL
1+ L

-11- &4 MZTOR
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Examples: TV Projections SVA

HUAWEI
r= A Z T — Tl
Fixed variation sparsity = small amount of blocks of equal coordinates.
-12- &4 MZTOR



n—1
T = )\ Z ‘I[Z] — ZC[i_|_1]|
1=1
Fixed variation sparsity = small amount of blocks of equal coordinates.

Projection on such set

1 1 0 0
ni ni
. . ’]’Ll
1 1
vy g 0
Po — 0 ... 0
' 0 0
1 1
0 n—mg n—mn
: N ’I’L—TLS
0 0 1 1
n—mg n—nm

N
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Algorithm 2 Adaptive Randomized Proximal Subspace Descent - ARPSD

Initialize 29, z! = proxvg(le(zO)), ¢=0,L={0}.
for k=1,... do
Y = Q¢ (a% =V [ (2))
28 = Per (y¥) + (I — Per) (2771)
P4 = prox, (@ (1))
if an adaptation is decided then
L+—LU{k+1}, 0 0+1
Generate a new admissible selection
Compute Q; = P, 2 and Q, "
Rescale z* « QgQZ_llz’”C
end if
end for

-13- 4| MOTOR
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Algorithm 2 Adaptive Randomized Proximal Subspace Descent - ARPSD

Initialize 29, z! = proxvg(le(zO)), ¢=0,L={0}.
for k=1,... do
y" = Qufz* — V[ (2"))
2% = Per (y¥) + (I — Pgr) (2571)
P4 = prox, (@7 (1))
if an adaptation is decided then
L+—LU{k+1}, 0 0+1
Generate a new admissible selection
Compute Q; = P, 2 and Q, "
Rescale z* « QgQZ_llz’”C
end if
end for
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Algorithm 2 Adaptive Randomized Proximal Subspace Descent - ARPSD
Initialize 29, z! = proxvg(le(zo)), ¢=0,L={0}.
for k=1,... do
k k k
y¥ = Q¢ (aF =V f ()
C: M) €N, C
2 = Pei () + (I — Por) (£57) { NSy
P = prox,,, (Q; (24))
if an adaptation is decided then PIC, € &) — {p if 2P € M; < [Sp(z*)]); =0
L LU{k+1}, 0+ 0+1 Z 1 elsewhere
Generate a new admissible selection
Compute Q, = P, 2 and Q;l
Rescale z* « QgQZ_llzk
end if
end for
-13- 4| MOTOR



N

HUAWEI

Algorithm 2 Adaptive Randomized Proximal Subspace Descent - ARPSD

Initialize 29, z! = proxvg(le(zO)), ¢=0,L={0}.
for k=1,... do
Y = Q¢ (a% =V [ (2))
28 = Per (y¥) + (I — Per) (2771)
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Let us specify ARPSD with the following simple adaptation strategy. We
take a fixed upper bound on the adaptation cost and a fixed lower bound on
uniformity:

1QQZL I3 <a  Awmin(Pe) > A
Then from the rate 1 —a =1 —2vyuLA/(p+ L), we can perform an adaptation

every
c = [log(a); log ((2 - a)/(2 — 20))]
iterations, so that a(l — a)® = (1 — a/2)¢ and k; = Lc.

14 - &5 MZTOR



Adaptation Process SPA

HUAWEI
—— every iteration = as in theory f ] —— every iteration = as in theory
b I | I 1 I T I ; r
= 10 1,+_|
= 1|1 ] |
& = |
E 2
2 = |F
= !
£ 210~
5 < !
Z 3
= 1077 1 ‘
i I|
I | I| | .| |. | |. . 10~ 10 | T ‘ l‘
0 02 04 06 08 1 12 14 0 02 04 D.ﬁ 38 1 1.2 14
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ARPSD: Convergence Result SPA

HUAWEI
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Assumption (on randomness) HUAWEI

For all k > 0, G* is F¥-measurable and admissible. Furthermore, if k& ¢ L,
(&%) is independent and identically distributed on [k, k]. The decision to adapt
or not at time k is F*-measurable, i.e. (k;), is a sequence of F*-stopping times.

15 %/ MOTOR



ARPSD: Convergence Result SPA

HUAWEI

Assumption (on randomness)

For all k > 0, G* is F¥-measurable and admissible. Furthermore, if k& ¢ L,
(&%) is independent and identically distributed on [k, k]. The decision to adapt
or not at time k is F*-measurable, i.e. (k;); is a sequence of F*-stopping times.

Theorem (Convergence of ARPSD)

For any v € (0,2/(u + L)], the sequence (z*) of the iterates of ARPSD con-
verges almost surely to the minimizer x* with rate

15- &5 MZTOR



ARPSD: Convergence Result SPA

HUAWEI

Assumption (on randomness)

For all k > 0, G* is F¥-measurable and admissible. Furthermore, if k& ¢ L,
(&%) is independent and identically distributed on [k, k]. The decision to adapt
or not at time k is F*-measurable, i.e. (k;); is a sequence of F*-stopping times.

Theorem (Convergence of ARPSD)

For any v € (0,2/(u + L)], the sequence (z*) of the iterates of ARPSD con-
verges almost surely to the minimizer z* Wif{h rate
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Iterate sparsity
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Iterate sparsity

Experiments: ARPSD with TV
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Strange Metric? gg

HUAWEI

mm—ZE (bs, h(a;, x)) +r(x)

xeR™ M

f(w)
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HUAWEI
M 1
: N (b hia
min )i | o Z (bj, h(aj,z)) | +r(z),
1=1 1€D;
fi
where the full dataset D is split onto M nonintersecting subsets D; and «; is
: 23
the proportion of examples .
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HUAWEI
M 1
' | — 0(b:, h(a;,x r(x
;rel]%}b o7 |i|Z(Ja(J7 >)+()7
1=1 1€D;
fi
where the full dataset D is split onto M nonintersecting subsets D; and «; is
: 23
the proportion of examples .
These subsets D; can be split over machines.
17 - &4 MZTOR



Z

ko —

1

N

HUAWEI
M 1
' (b;, h(a; r(x
52]% 87 |Dz| (37 (ajax)) + ( )7
1=1 1€D;
fi
where the full dataset D is split onto M nonintersecting subsets D; and «; is
the proportion of examples %
These subsets D; can be split over machines.
Communication
k= Z ozizf
i
Master
Pex (yF) + (I — Por) (277")
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1=1 1€D;
fi
where the full dataset D is split onto M nonintersecting subsets D; and «; is
the proportion of examples %
These subsets D; can be split over machines.
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k= Z ozz-zf
i
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Psr (yF) + (I — Pgr) (2571
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where the full dataset D is split onto M nonintersecting subsets D; and «; is
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HUAWEI

Consider the set of artificial jumps & = {ni,nq,...,n;_1} and denote by
R =1{i ¢S :[Su(®)]; = 0} the set of possible random entries. Fix the
amount of sampled elements s and sample “first” element Ry uniformly in R =
{Ri}1<i<r. Select “first s” elements starting from Ry considering the cyclic
structure of the list of elements (R,11 = R1).

If [ is small enough, it will not change the sparsity property of the ran-
dom projection Pgr; however, this modification will force all the projections to
be block-diagonal with blocks’ ends on positions nq,...n;_1. In contrast with
jumps(z*) that we could not control, by adding ! artificial jumps, we could guar-
antee that each block of the Pgr has at most [n/l] rows. Since every random
projection has end of the block on positions {n;},..., ;. P¢ also has such block

structure and we could split the computation of Qe_l and Qg into [ independent
parts and could be done in parallel.
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Strategies for (A)RPSD

(non-adaptive) subspace
descent RPSD

Ve

HUAWEI

adaptive subspace descent
ARPSD

Subspace family

C=1{C,....C.

Algorithm

= Q{;r:k -V f (;r:k))

=
7
Il

PE-,L- (yk) + (I - P‘S“) (Zk_l)

P = prox,, (@ ()

Option 1

C; € &% with probability p

C;, € &% with pmhahilitv
{p if 28 € M; & [Sp(2¥)]; =

1 elsewhere

Selection

Option 2

Sample s elements

uniformly in C

Sample s elements unifurmlv in
(Ci 2" € M ie. [Syi(zb)); = 0}

and add all [—‘l[—‘[Ill—‘Ilt‘: 1n

{Cj:2" ¢ Mjie [Su(h)]; =1}

&b
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Logistic regression with elastic net regularizer on rcvl_train dataset (n =
47236 m = 20242).
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Why not SGD su

HUAWEI
i 100 A
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Prox GD Prox SGD (minibatch of size 10)

Synthetic LASSO problem min 3||Az — b||3 + A1 ]|z||; for random generated
matrix A € R9X100 and vector b € R and hyperparameter \; chosen to

reach 15% of density (amount of non-zero coordinates) of the final solution.
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Another way to define the non-degeneracy for the problem HUAWEI

min f(z) + ()

is the following:

Vf(x*)erior(z”).

In case of ¢; regularizer r(x) = A1||z||; this can be written explicitly as

‘Vf(:v*)[j]’ < A1 for all j € supp(x™).
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