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Smooth, convex.

Convex, non-smooth.

Why non smoothness?

Sparse solution Fixed variation

Samuel Vaiter et al. Model selection with low complexity priors. Information and Inference: A 
Journal of the IMA 4.3 (2015): 230-287.

To enforce some structure of the optimal solution.

e.g. feature selection problems e.g. signal processing

Structural Risk Minimization
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Proximal Gradient Descent
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R Tyrrell Rockafellar. Monotone operators and the proximal point algorithm.
SIAM journal on control and optimization, 14(5):877–898, 1976.

Proximal gradient descent

Step 1

Step 2

forward (gradient) step.

backward (proximal) step.
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One nice thing
Proximal methods identify a near optimal subspace.  

Theorem (Enlarged identification)

Sparsity vector

Franck Iutzeler and Jérôme Malick. Nonsmoothness in Machine Learning: specific structure, proximal 
identification, and applications. Set-Valued and Variational Analysis (2020): 1-18.
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One nice thing
Proximal methods identify a near optimal subspace.  

Theorem (Enlarged identification)

Sparsity vector

Franck Iutzeler and Jérôme Malick. Nonsmoothness in Machine Learning: specific structure, proximal 
identification, and applications. Set-Valued and Variational Analysis (2020): 1-18.
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Full gradient computation is expensive. 

Coordinate descent methods is a class of iterative methods in which only one coordinate 
(block) is updated on every iteration.

Example 1 (smooth). Example 2 (separable regularizer).

Drawback: explicit use of the separability of the regularizer.

Peter Richtárik and Martin Takáč. Iteration complexity of randomized block-coordinate descent 
methods for minimizing a composite function. Mathematical Programming 144.1-2 (2014): 1-38.
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Randomized Subspace Descent

Olivier Fercoq and Pascal Bianchi. A coordinate-descent primal-dual algorithm with large step size and 
possibly nonseparable functions. SIAM Journal on Optimization 29.1 (2019): 100-134.
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In this reformulation the separability is not required!
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General orthogonal projections are used!

Randomized Subspace Descent

Does it work like this? 
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Examples: Subspaces
Example 3.

Does not work if the first coordinates of the starting and the optimal point 
are different.

Covering family of subspaces
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``Sketch’’Project
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Lemma 1

Lemma 2 Identification!
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Fixed variation sparsity = small amount of blocks of equal coordinates.

Projection on such set
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Assumption (on randomness)

Theorem (Convergence of ARPSD)
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Experiments: ARPSD with TV
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Strange Metric?

Master
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Strange Metric?

Master

Bottleneck

Amount of subspaces exploredAmount of subspaces explored
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Thank You ForThank You For

  Your Attention!Your Attention!



Practical for TV regularizer



Strategies for (A)RPSD



Practical robustness



Why not SGD

0 200 400 600 800 1000
Iterations

0

20

40

60

80

100

Co
or

di
na

te
s i

n 
th

e 
su

pp
or

t

0 2000 4000 6000 8000 10000
Iterations

0

20

40

60

80

100

Co
or

di
na

te
s i

n 
th

e 
su

pp
or

t

Prox GD Prox SGD (minibatch of size 10)



Non-degeneracy
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