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Problem




convex
L-smooth

min Y  fi(z) + r(z)

convex
non-smooth

filz) =) milj(x)
JES;

l; — loss associated with ™ example

S; — i*" set of examples
th

m; — proportion of examples in 7" set
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Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free BOtt leneCk

Multiple
- o~
Private data Machines = Phones (Federated Learning)

Computations are cheaper than communications

Let’s make communications cheaper!
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diemrantt WATCh the game

A lot of fans —_— Need to make a ballot for the tickets

sparsification
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Drawbacks of synchronous algorithms

/
- N
Wasting of time A lot of communications in one time
All machines have to wait the Master machine communicates with
moment, when everyone finishes all machines in the same time

( MASTER )
{ Receiving update J

®
A °®
e} [ ]
[ ] )
. [ ]
O
SLAVE i

(SLAvE 1 | ( ) (SLAVE M |
e0o (YY)
{ Thinking... J {Sending update J { Thinking... J
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Call for

First-order proximal methods (for example Proximal Gradient Descent)

z** = prox(z® —yV f(z"))
Y9

1
where prox(z) := argmin {g(u) + —||lu— :1:||2}
g u 2y
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convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

Pt = prox(zF — AV f(z*))
Y9

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

F(x):szi(x) — P VF(x):Zmei(x)
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Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

d,’f - time elapsed from the last update

Df- the time of penultimate update

update
i = i(k) viewpoint ::O—o—@::::m::::m::::>
e A 9 @ T
k— DF =k - db
j # i(k) viewpoint 0 0 4 @ ——Q——F—— t'>
k =Dk k=" k HHe
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Non-sparsified Algorithm

[ MASTER

T TF 1 4 AR
k —k
z" < prox,,.(Z")

®
' L
A o AF
([ ] °
]
[
SLAVE 1 (SLAVE i ) SLAVE M
Computation of S AV, (xk_df) Computation of
k—d¥ ¢ ! k—dk
V iz 4) Y Akex;'l__xi YY) V (@™ %)
in process. x; — x; + AF in process.

A delay-tolerant proximal-gradient algorithm for distributed learning.
Adobe In International Conference on Machine Learning (pp. 3584-3592).

?: Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).
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Non-sparsified Algorithm

SLAVE 1

Computation of
Vfi(zkd)

in process.

[ MASTER

TF — TFL 4 Ak

zk proxw(:ik)

[ SLAVE i

vl = bl — V(b

A’“%:z:j—a:i
x;  m; + AF

[ SLAVE M

Computation of
V far (zF )

in process.

If dimension is very big, it is very expansive to send full gradient

A delay-tolerant proximal-gradient algorithm for distributed learning.

T Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

Adobe In International Conference on Machine Learning (pp. 3584-3592).
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Non-sparsified Algorithm

[ MASTER

T TF 1 4 AR
k —k
z" < prox,,.(Z")

SLAVE 1 EEaE i (SLAVE M

Computation of S VY, (xk—df) Computation of
k—d¥ ¢ k—dk

V iz 4) Y Akex;'l__xi YY) V (@™ %)
in process. x; — x; + AF in process.

If dimension is very big, it is very expansive to send full gradient

If regulariser is sparsity enforcing, no need to sparsify master ¢ worker

A delay-tolerant proximal-gradient algorithm for distributed learning.
Adobe In International Conference on Machine Learning (pp. 3584-3592).

?: Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

.3: Fadili J., Malick J., Peyre G. Sensitivity analysis for mirror-stratifiable convex functions

e SIAM Journal on Optimization. - 2018. - T. 28. - Ne. 4. - C. 2975-3000.
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([ SLAVE 1

Computation of
V fi(ahd)

in process.

[ MASTER

T8 T AR
zk Prox., (z%)
Choose sparsity mask S*

= »
[ )
Tt e k
Sk.' .‘ [A ]Sk—df
) s
o
[ SLAVE i
gk ok
ol =ah i — VY fi(ah )
AF :c:r —x;
b YY)
XT; — T; + [A ]Sk_d'?
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Computation of
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in process.

[ MASTER

R A [Ak]sk_ _
zk Prox., (z%)

Choose sparsity mask S*

S¥ ™

: o
,;‘. .‘ [Ak] k—dk
) s
[ )
[ SLAVE i

v} = 2k — yV fy (2R
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([ SLAVE 1

Computation of
V fi(ahd)

in process.

( MASTER AF

T* T mAF] e
zk Prox., (z%)
Choose sparsity mask S*¥

ST T

v S
\xsk.'. & [Algeas &
- () °
®
[ SLAVE i

-

v} = b E AV (k)
AF :cj —x;
XT; — T; + [Ak]sk—df
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Sparsified Algorithm

([ SLAVE 1

Computation of
V fi(ah )

in process.

( MASTER 'Y .

Th TR AR

Sk_di
zk Prox., (z%)

Choose sparsity mask S¥

b S
xh e k
\ Sk‘. ..‘ [A ]Sk—dk
- o
[ )
[ SLAVE i

v} = 2k — yV fy (2R
AF :z:l+ —x;
XT; — T; + [Ak]sk—df‘

A

"

How to chose the sparsity mask?
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[ MASTER

zh Tl 4 Wi[Ak]Sk—d’?
zk Prox., (z%)

Choose sparsity mask S*

ko ;)
. .
e k
Sk'. s A ]Sk—d’”
. [ ]
o
(SLAVE 1 \ SLAVE i W (SLAVE M
. k k .
Computatlor: of rl = Q’;kk_di — AV fi(aF—d) Computauorllc of
V(") oeo (A ' XY V fa (™)
in process. Ti ¢ wi + | ]Sk—df in process.

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

i Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems
. SOIAM Journal on Optimization. - 2012. - T. 22. - Ne. 2. - C. 341-362.
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Back to Ballot

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

Most loyal have probability 1, all the others much smaller

It’s an example of identification from real world

13
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Let’s introduce our adaptive way of mask selection for l1-regularizer

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with some probabilities

Dimension reductions without loss of speed (but only from some finite moment of time)

Theoretical result (for s.c. objective)

T, 2
E|z¥ — z¥|]? < <2—2L —mian) max IEH:U
w~+ L i j=1,..,.M

k—D¥ *

J L

where k € kp, kmi1), kms+1 = min {k k — Df > k,, for all i}, and stepsize 7 € (0,2/(u + L)].

Asynchronous Distributed Learning with Sparse Communications and Identification.

i Grishchenko, D., lutzeler, F., Malick, J., & Amini, M. R. (2018).
Adobe arXiv preprint arXiv:1812.03871.

* - l1-regularizer enforces coordinate sparsity



Core ldea v.2

L Dk 2
E|zf — xf|* < (2 _ o R —minpz) max Efo P -z}
y

WU+ L 1 =1,..,.M
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Core ldea v.2

k-Df 2

L
EHCUf]f . 37:“2 < (2 _ QL — minpi> max K HCC] j
J

WU+ L 7 =1,..,.M

\ should be less than 1!
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L 2
gjk.:_Di —
J J

L
E|zf — 2F||? < (2 o IHY minpi> max E |
u—+ L i j=1,...M

\§
%= should be less than 1!

Bound on the minimal probability that depends on problem conditioning

2vu L
minpi21—7—ﬁl€
z H
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k
2P p
J J

L
E|zf — 2F||? < (2 o IHY minpi> max E |
u—+ L i j=1,...M

'S

%= should be less than 1!

Bound on the minimal probability that depends on problem conditioning

2vu L
minpi21—v—ﬁl€
z H

For ill-conditioned problems there is NO sparsification

15



2

k
2P p
J J

L
E|zf — 2F||? < (2 o IHY minpz-) max E |
u—+ L i j=1,...M

AR

= should be less than 1!

Bound on the minimal probability that depends on problem conditioning

2vu L
minpi21—%
z H

For ill-conditioned problems there is NO sparsification

Let us use l2-regularizer to recondition the initial problem
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Catalyst



Input: xo € R", smoothing parameter x, optimization method M, yo = xo, g = 1

Output: =* € argmin g~ f(2)
while desired stopping criterion is not satisfied do
Find aj using M

: K
xy, € argmin x {hg(z) £ f(z) + 5 llz = Y1’}
rER™
Compute ay € (0;1) from ap? = (1 — ag)ar—_1% + qog
Compute yg using B from (0,1)
Yk = Tk + Br(Tk — Tr—1),
where
op—1(1 — ap—1)
op—12 + o

Br =

end

Lin, H., Mairal, J., & Harchaoui, Z. (2015).A universal catalyst for first-order
- optimization. In Advances in neural information processing systems (pp. 3384-3392).
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Input: xo € R™, smoothing parameter x, optimization method M, yg = g, g = —Min

Output: z* € argmin gn f(z)
while desired stopping criterion is not satisfied do
Find aj using M

: K
zk, € argmin k {hk(z) = f(z) + 7|z - yr—1(*}
rER™
Compute ay € (0;1) from ap? = (1 — ag)ar—_1% + qog
Compute yg using B from (0,1)
Yk = Tk + Br(Tk — Th—1),
where
op—1(1— ak—1)
op—12 + o

Br =

end

The only requirement: method M
that solves min hy(x) with linear rate.

Lin, H., Mairal, J., & Harchaoui, Z. (2015).A universal catalyst for first-order
- optimization. In Advances in neural information processing systems (pp. 3384-3392).
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Inner Method
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WORKER ¢

Initialize K
Receive x, y from master

Initialize z; = ;7 =

Update objective function
K

)l ol —ylI?
while not interrupted by master do
[z]s « [z — YVhi(2)]s
Azt —x;
Send [A]g to master
[zi]s  [2]]s

Receive £ and S from master
end




Inner Method

Communication

17

WORKER 1

Initialize K
Receive x, y from master

Initialize x; = x;" — T

Update objective function
K
hi() = £:0)+ 51—l

while not interrupted by master do
[zF]s « [& —YVhi(2)]s
Azl -

Send [Al]s to master

[zi]s « [z]s

Receive £ and S from master
end




Inner Method

MASTER

Reinitialize k = 1,Z) = y1—1

Broadcast =} = prox., (Z9) s y1—1

while stopping criterion is not satisfied do
Receive [A¥] - from agent i*

- —k—1 p

IV —z) 7 + Wi[Ak]Sk_ka

zf ¢ prox,,(zf)

Draw sparsity mask S*

Send z, S* to agent ¥

k—k+1
end
while some workers compute do

Receive [A¥] oD%, from agent i*

—k . k-1 k
If — Ty +mlA ]Sk‘ka
Stop worker

end

@y < prox,, (z})

Communication

17

WORKER ¢

Initialize K
Receive x, y from master

Initialize z; = ;7 =

Update objective function
K
hi(-) = fi() + §|| - —y|1?

while not interrupted by master do
[zF]s « [z —YVhi(2)]s
Azt —x;

Send [Al]s to master

[zi]s + [z]s

Receive £ and S from master
end
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Required size of update”

Bound on probability to guarantee such size

(1 — min; p;) L — p

Boundon K > .
M1, Pj

Requires more restarts than Catalyst with optimal parameter «*
if minimal probability is small enough and it’s fair to tell about sparsification

*-in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability
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after identification happened

p - the sparsity of the optimal solution

pn - the size of communication from master

S*| > pn(1+ (1 — p) minp;) - ... from worker

Results:

No reason to select coordinates with different probabilities
An optimal uniform probability is the following

v 2p
14 3p

p

19



Theoretical Result



Theorem (s.c. case)

Consider the sparsity of the optimal solution p.

2 1 —p)L —
Choose p = P , and corresponding k = (1=p) - :
14 3p p
2 _ :
Then for any v € (O, s ASPY-DR algorithm

~ 1+ : : e
converges O (\/ p P > times faster in communications

metrics than nonsparsified one.
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Numerical Experiments

21



Software: Python + MPl4py Dataset: Madelon

Amount of workers: 4 Final sparsity: 0.05

Problem: standard regularized logistic regression Optimal probability: ~ 0.9
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Suboptimality

Software: Python + MPl4py Dataset: Madelon

Amount of workers: 4 Final sparsity: 0.05
Problem: standard regularized logistic regression Optimal probability: ~ 0.9
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101
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10~4
10—° Y
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Iterations
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Software: Python + MPl4py

Amount of workers: 4

Problem: standard regularized logistic regression

101 @ —6-5— ASPY-DR, p = 0.5
- —6-65- ASPY-DR, p = 0.05
0-Q5 ADAve-PG
100 ——+— ASPY-DR, p = 0.1
'E?) -1
= 10
E
21072
o)
=3
10
it
1095 o+
0 200 400 600 800

Iterations

Dataset: Madelon

Final sparsity: 0.05

Optimal probability: ~ 0.9

101 ® —6-5— ASPY-DR, p = 0.5
. 65— ASPY-DR, p = 0.05
0-05 ADave-PG
100 & —6-1+— ASPY-DR, p = 0.1
£ 1
=~ 10 -
£
B 10—2
84 10
o)
=
1
10
10~° oka ‘
0 2 4 6
Exchanges .10°
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