ldentification-based first-order
algorithms for distributed learning

Dmitry Grishchenko

UNIVERSITE
' Grenoble "
4 Alpes LI G

ICCOPT 2019

6 August 2019, Berlin

(@P-Bi;RLIN

Collaborators

Collaborators

Collaborators

My supervisors

J. Malick
CNRS, LJK

F. lutzeler
LJK

Collaborators

My supervisors

F. lutzeler J. Malick
LJK CNRS, LJK
My student
L. Kochiev

MIPT

Problem

convex
L-smooth

min Y fi(z) + r(z)

convex
non-smooth

filz) =) milj(x)
JES;

l; — loss associated with ™ example

S; — i*" set of examples
th

m; — proportion of examples in 7" set

Distribute It!

Distribute It!

Data proportions

Distribute It!

Data proportions

o o '
Distribute It! Centralized

Parallel or Distributed?

Parallel or Distributed?

Parallel Distributed

Parallel or Distributed?

Parallel Distributed

Machines

Parallel or Distributed?

Parallel Distributed

Machines Single Multiple

Parallel or Distributed?

Parallel Distributed

Machines Single Multiple

Storage

Parallel or Distributed?

Parallel Distributed

Machines Single Multiple

Storage Limited Unlimited

Parallel or Distributed?

Parallel Distributed
Machines Single Multiple
Storage Limited Unlimited

Communications

Parallel or Distributed?

Parallel Distributed
Machines Single Multiple
Storage Limited Unlimited

Communications Free Bottleneck

Parallel or Distributed?

Parallel Distributed
Machines Single
Storage Limited Unlimited
Communications Free Bottleneck

Multiple

Parallel or Distributed?

Parallel Distributed
Machines Single
Storage Limited Unlimited
Communications Free Bottleneck
Multiple

Private data

Parallel or Distributed?

Parallel Distributed
Machines Single
Storage Limited Unlimited
Communications Free Bottleneck
Multiple

Private data Machines = Phones (Federated Learning)

Parallel or Distributed?

Parallel Distributed
Machines Single
Storage Limited Unlimited

Communications Free BOtt leneCk

Multiple

7\

Private data Machines = Phones (Federated Learning)

Parallel or Distributed?

Parallel Distributed
Machines Single
Storage Limited Unlimited

Communications Free BOtt leneCk

Multiple

7\

Private data Machines = Phones (Federated Learning)

Result

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free BOtt le n ec k

Multiple
- o~
Private data Machines = Phones (Federated Learning)

Computations are cheaper than communications

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free BOtt leneCk

Multiple
- o~
Private data Machines = Phones (Federated Learning)

Computations are cheaper than communications

Let’s make communications cheaper!

5

The Size Is Important!

The Size Is Important!

The Size Is Important!

Not so many fans

The Size Is Important!

Not so many fans e—.e’ Everyone can go to the stadium and watch the game

The Size Is Important'

The Size Is Important'

A lot of fans

A lot of fans —_— Need to make a ballot for the tickets

diemrantt WATCh the game

A lot of fans —_— Need to make a ballot for the tickets

sparsification

Synchronous?

Synchronous?

Drawbacks of synchronous algorithms

Drawbacks of synchronous algorithms

/

-
Wasting of time

All machines have to wait the
moment, when everyone finishes

Drawbacks of synchronous algorithms

/

-
Wasting of time

All machines have to wait the
moment, when everyone finishes

N
A lot of communications in one time

Master machine communicates with
all machines in the same time

Drawbacks of synchronous algorithms

/

-
Wasting of time

All machines have to wait the
moment, when everyone finishes

N
A lot of communications in one time

Master machine communicates with
all machines in the same time

Drawbacks of synchronous algorithms

’

-
Wasting of time

All machines have to wait the
moment, when everyone finishes

N
A lot of communications in one time

Master machine communicates with
all machines in the same time

Drawbacks of synchronous algorithms

/
- N
Wasting of time A lot of communications in one time
All machines have to wait the Master machine communicates with
moment, when everyone finishes all machines in the same time

(MASTER)
{ Receiving update J

®
A °®
e} []
[])
. []
O
SLAVE i

(SLAvE 1 | () (SLAVE M |
e0o (YY)
{ Thinking... J {Sending update J { Thinking... J

Back to Basics

Problems of the form mIiRn f (+ r(x)
S ‘

Back to Basics

Problems of the form min f
rEeR™

Call for

First-order proximal methods (for example Proximal Gradient Descent)

Back to Basics

Problems of the form min f
rEeR™

Call for _.

First-order proximal methods (for example Proximal Gradient Descent)

z** = prox(z® —yV f(z"))
Y9

Back to Basics

Problems of the form

Call for

First-order proximal methods (for example Proximal Gradient Descent)

z** = prox(z® —yV f(z"))
Y9

1
where prox(z) := argmin {g(u) + —||lu— :1:||2}
g u 2y

convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

"t = prox(a® — 1V f ("))
Yg

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

"t = prox(a® — 1V f ("))
Yg

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

F(x) = Z i fi ()

convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

Pt = prox(zF — AV f(z*))
Y9

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

F(x):szi(x) — P VF(x):Zmei(x)

Delays

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

df - time elapsed from the last update

Df- the time of penultimate update

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

d,’f - time elapsed from the last update

Df- the time of penultimate update

update
i = i(k) viewpoint ::O—o—@::::m::::m::::>
e A 9 @ T
k— DF =k - db
j # i(k) viewpoint 0 0 4 @ ——Q——F—— t'>
k =Dk k=" k HHe

10

Non-sparsified Algorithm

Non-sparsified Algorithm

[MASTER

T TF 1 4 AR
k —k
z" < prox,,.(Z")

®
' L
A o AF
([] °
]
[
SLAVE 1 (SLAVE i) SLAVE M
Computation of S AV, (xk_df) Computation of
k—d¥ ¢ ! k—dk
V iz 4) Y Akex;'l__xi YY) V (@™ %)
in process. x; — x; + AF in process.

A delay-tolerant proximal-gradient algorithm for distributed learning.
Adobe In International Conference on Machine Learning (pp. 3584-3592).

?: Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

11

Non-sparsified Algorithm

SLAVE 1

Computation of
Vfi(zkd)

in process.

[MASTER

TF — TFL 4 Ak

zk proxw(:ik)

[SLAVE i

vl = bl — V(b

A’“%:z:j—a:i
x; m; + AF

[SLAVE M

Computation of
V far (zF)

in process.

If dimension is very big, it is very expansive to send full gradient

A delay-tolerant proximal-gradient algorithm for distributed learning.

T Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

Adobe In International Conference on Machine Learning (pp. 3584-3592).

11

Non-sparsified Algorithm

[MASTER

T TF 1 4 AR
k —k
z" < prox,,.(Z")

SLAVE 1 EEaE i (SLAVE M

Computation of S VY, (xk—df) Computation of
k—d¥ ¢ k—dk

V iz 4) Y Akex;'l__xi YY) V (@™ %)
in process. x; — x; + AF in process.

If dimension is very big, it is very expansive to send full gradient

If regulariser is sparsity enforcing, no need to sparsify master ¢ worker

A delay-tolerant proximal-gradient algorithm for distributed learning.
Adobe In International Conference on Machine Learning (pp. 3584-3592).

?: Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

.3: Fadili J., Malick J., Peyre G. Sensitivity analysis for mirror-stratifiable convex functions

e SIAM Journal on Optimization. - 2018. - T. 28. - Ne. 4. - C. 2975-3000.

11

Sparsified Algorithm

Sparsified Algorithm

([SLAVE 1

Computation of
V fi(ahd)

in process.

[MASTER

T8 T AR
zk Prox., (z%)
Choose sparsity mask S*

= »
[)
Tt e k
Sk.' .‘ [A]Sk—df
) s
o
[SLAVE i
gk ok
ol =ah i — VY fi(ah)
AF :c:r —x;
b YY)
XT; — T; + [A]Sk_d'?

12

([SLAVE M

Computation of
V far (k=)

in process.

Sparsified Algorithm

([SLAVE 1

~

Computation of
V fi(ah)

in process.

[MASTER

R A [Ak]sk_ _
zk Prox., (z%)

Choose sparsity mask S*

S¥ ™

: o
,;‘. .‘ [Ak] k—dk
) s
[)
[SLAVE i

v} = 2k — yV fy (2R
AF :c;L —x;
XT; — T; + [Ak]sk—diﬁ

12

([SLAVE M

Computation of
V far (k=)

in process.

Sparsified Algorithm

([SLAVE 1

Computation of
V fi(ahd)

in process.

(MASTER AF

T* T mAF] e
zk Prox., (z%)
Choose sparsity mask S*¥

ST T

v S
\xsk.'. & [Algeas &
- () °
®
[SLAVE i

-

v} = b E AV (k)
AF :cj —x;
XT; — T; + [Ak]sk—df

4

12

([SLAVE M

Computation of
V far (k=)

in process.

Sparsified Algorithm

([SLAVE 1

Computation of
V fi(ah)

in process.

(MASTER 'Y .

Th TR AR

Sk_di
zk Prox., (z%)

Choose sparsity mask S¥

b S
xh e k
\ Sk‘. ..‘ [A]Sk—dk
- o
[)
[SLAVE i

v} = 2k — yV fy (2R
AF :z:l+ —x;
XT; — T; + [Ak]sk—df‘

A

"

How to chose the sparsity mask?

12

([SLAVE M

Computation of
V far (k=)

in process.

[MASTER

zh Tl 4 Wi[Ak]Sk—d’?
zk Prox., (z%)

Choose sparsity mask S*

ko ;)
. .
e k
Sk'. s A]Sk—d’”
. []
o
(SLAVE 1 \ SLAVE i W (SLAVE M
. k k .
Computatlor: of rl = Q’;kk_di — AV fi(aF—d) Computauorllc of
V(") oeo (A ' XY V fa (™)
in process. Ti ¢ wi + |]Sk—df in process.

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

i Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems
. SOIAM Journal on Optimization. - 2012. - T. 22. - Ne. 2. - C. 341-362.

12

[MASTER

zh Tl 4 Wi[Ak]Sk—d’?
zk Prox., (z%)

Choose sparsity mask S*

ko ;)
. .
e k
Sk'. s A]Sk—d’”
. []
o
(SLAVE 1 \ SLAVE i W (SLAVE M
. k k .
Computatlor: of rl = Q’;kk_di — AV fi(aF—d) Computauorllc of
V(") oeo (A ' XY V fa (™)
in process. Ti ¢ wi + |]Sk—df in process.

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

i Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems
. SOIAM Journal on Optimization. - 2012. - T. 22. - Ne. 2. - C. 341-362.

12

Back to Ballot

It’s an example of identification from real world

13

1 wave - most loyal fans (the biggest amount of games visited)

It’s an example of identification from real world

13

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

It’s an example of identification from real world

13

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

It’s an example of identification from real world

13

Back to Ballot

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

Most loyal have probability 1, all the others much smaller

It’s an example of identification from real world

13

Core ldea

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection for li-regularizer

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection for li-regularizer

1 - select all the coordinates that are in master’s current iterate

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection for li-regularizer

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with some probabilities

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection for li-regularizer

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with some probabilities

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection for l1-regularizer

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with some probabilities

Dimension reductions without loss of speed (but only from some finite moment of time)

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection for l1-regularizer

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with some probabilities

Dimension reductions without loss of speed (but only from some finite moment of time)

Theoretical result (for s.c. objective)

T, 2
E|z¥ — z¥|]? < <2—2L —mian) max IEH:U
w~+ L i j=1,..,.M

k—D¥ *

J L

where k € kp, kmi1), kms+1 = min {k k — Df > k,, for all i}, and stepsize 7 € (0,2/(u + L)].

Asynchronous Distributed Learning with Sparse Communications and Identification.

i Grishchenko, D., lutzeler, F., Malick, J., & Amini, M. R. (2018).
Adobe arXiv preprint arXiv:1812.03871.

* - l1-regularizer enforces coordinate sparsity

Core ldea v.2

L Dk 2
E|zf — xf|* < (2 _ o R —minpz) max Efo P -z}
y

WU+ L 1 =1,..,.M

15

Core ldea v.2

k-Df 2

L
EHCUf]f . 37:“2 < (2 _ QL — minpi> max K HCC] j
J

WU+ L 7 =1,..,.M

\ should be less than 1!

15

L 2
gjk.:_Di —
J J

L
E|zf — 2F||? < (2 o IHY minpi> max E |
u—+ L i j=1,...M

\§
%= should be less than 1!

Bound on the minimal probability that depends on problem conditioning

2vu L
minpi21—7—ﬁl€
z H

15

2

k
2P p
J J

L
E|zf — 2F||? < (2 o IHY minpi> max E |
u—+ L i j=1,...M

'S

%= should be less than 1!

Bound on the minimal probability that depends on problem conditioning

2vu L
minpi21—v—ﬁl€
z H

For ill-conditioned problems there is NO sparsification

15

2

k
2P p
J J

L
E|zf — 2F||? < (2 o IHY minpz-) max E |
u—+ L i j=1,...M

AR

= should be less than 1!

Bound on the minimal probability that depends on problem conditioning

2vu L
minpi21—%
z H

For ill-conditioned problems there is NO sparsification

Let us use l2-regularizer to recondition the initial problem

15

Catalyst

Input: xo € R", smoothing parameter x, optimization method M, yo = xo, g = 1

Output: =* € argmin g~ f(2)
while desired stopping criterion is not satisfied do
Find aj using M

: K
xy, € argmin x {hg(z) £ f(z) + 5 llz = Y1’}
rER™
Compute ay € (0;1) from ap? = (1 — ag)ar—_1% + qog
Compute yg using B from (0,1)
Yk = Tk + Br(Tk — Tr—1),
where
op—1(1 — ap—1)
op—12 + o

Br =

end

Lin, H., Mairal, J., & Harchaoui, Z. (2015).A universal catalyst for first-order
- optimization. In Advances in neural information processing systems (pp. 3384-3392).

16

Input: xo € R™, smoothing parameter x, optimization method M, yg = g, g = —Min

Output: z* € argmin gn f(z)
while desired stopping criterion is not satisfied do
Find aj using M

: K
zk, € argmin k {hk(z) = f(z) + 7|z - yr—1(*}
rER™
Compute ay € (0;1) from ap? = (1 — ag)ar—_1% + qog
Compute yg using B from (0,1)
Yk = Tk + Br(Tk — Th—1),
where
op—1(1— ak—1)
op—12 + o

Br =

end

The only requirement: method M
that solves min hy(x) with linear rate.

Lin, H., Mairal, J., & Harchaoui, Z. (2015).A universal catalyst for first-order
- optimization. In Advances in neural information processing systems (pp. 3384-3392).

16

Inner Method

Inner Method

17

WORKER ¢

Initialize K
Receive x, y from master

Initialize z; = ;7 =

Update objective function
K

)l ol —ylI?
while not interrupted by master do
[z]s « [z — YVhi(2)]s
Azt —x;
Send [A]g to master
[zi]s [2]]s

Receive £ and S from master
end

Inner Method

Communication

17

WORKER 1

Initialize K
Receive x, y from master

Initialize x; = x;" — T

Update objective function
K
hi() = £:0)+ 51—l

while not interrupted by master do
[zF]s « [& —YVhi(2)]s
Azl -

Send [Al]s to master

[zi]s « [z]s

Receive £ and S from master
end

Inner Method

MASTER

Reinitialize k = 1,Z) = y1—1

Broadcast =} = prox., (Z9) s y1—1

while stopping criterion is not satisfied do
Receive [A¥] - from agent i*

- —k—1 p

IV —z) 7 + Wi[Ak]Sk_ka

zf ¢ prox,,(zf)

Draw sparsity mask S*

Send z, S* to agent ¥

k—k+1
end
while some workers compute do

Receive [A¥] oD%, from agent i*

—k . k-1 k
If — Ty +mlA]Sk‘ka
Stop worker

end

@y < prox,, (z})

Communication

17

WORKER ¢

Initialize K
Receive x, y from master

Initialize z; = ;7 =

Update objective function
K
hi(-) = fi() + §|| - —y|1?

while not interrupted by master do
[zF]s « [z —YVhi(2)]s
Azt —x;

Send [Al]s to master

[zi]s + [z]s

Receive £ and S from master
end

Fly in the Ointment

Required size of update”

*-in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability

18

Required size of update”

Bound on probability to guarantee such size

*-in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability

18

Required size of update”

Bound on probability to guarantee such size

(1 — min; p;) L — p

Boundon K > .
M1, Pj

*-in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability

18

Required size of update”

Bound on probability to guarantee such size

(1 — min; p;) L — p

Boundon K > .
M1, Pj

Requires more restarts than Catalyst with optimal parameter «*
if minimal probability is small enough and it’s fair to tell about sparsification

*-in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability

18

Communication Metric

after identification happened

19

after identification happened

p - the sparsity of the optimal solution

19

after identification happened

p - the sparsity of the optimal solution

pn - the size of communication from master

19

after identification happened

p - the sparsity of the optimal solution

pn - the size of communication from master

S*| > pn(1+ (1 — p) minp;) - ... from worker

19

after identification happened

p - the sparsity of the optimal solution

pn - the size of communication from master

S*| > pn(1+ (1 — p) minp;) - ... from worker

Results:

No reason to select coordinates with different probabilities

19

after identification happened

p - the sparsity of the optimal solution

pn - the size of communication from master

S*| > pn(1+ (1 — p) minp;) - ... from worker

Results:

No reason to select coordinates with different probabilities
An optimal uniform probability is the following

v 2p
14 3p

p

19

Theoretical Result

Theorem (s.c. case)

Consider the sparsity of the optimal solution p.

2 1 —p)L —
Choose p = P , and corresponding k = (1=p) - :
14 3p p
2 _ :
Then for any v € (O, s ASPY-DR algorithm

~ 1+ : : e
converges O (\/ p P > times faster in communications

metrics than nonsparsified one.

20

Numerical Experiments

21

Software: Python + MPl4py Dataset: Madelon

Amount of workers: 4 Final sparsity: 0.05

Problem: standard regularized logistic regression Optimal probability: ~ 0.9

21

Suboptimality

Software: Python + MPl4py Dataset: Madelon

Amount of workers: 4 Final sparsity: 0.05
Problem: standard regularized logistic regression Optimal probability: ~ 0.9
10 —9-5— ASPY-DR, p = 0.5
10 L -6-65— ASPY-DR, p = 0.05
05 ADAve-PG

100 —6-1+— ASPY-DR, p = 0.1
101
10—2
10—3
10~4
10—° Y

0 200 400 600 800
Iterations

21

Software: Python + MPl4py

Amount of workers: 4

Problem: standard regularized logistic regression

101 @ —6-5— ASPY-DR, p = 0.5
- —6-65- ASPY-DR, p = 0.05
0-Q5 ADAve-PG
100 ——+— ASPY-DR, p = 0.1
'E?) -1
= 10
E
21072
o)
=3
10
it
1095 o+
0 200 400 600 800

Iterations

Dataset: Madelon

Final sparsity: 0.05

Optimal probability: ~ 0.9

101 ® —6-5— ASPY-DR, p = 0.5
. 65— ASPY-DR, p = 0.05
0-05 ADave-PG
100 & —6-1+— ASPY-DR, p = 0.1
£ 1
=~ 10 -
£
B 10—2
84 10
o)
=
1
10
10~° oka ‘
0 2 4 6
Exchanges .10°

21

