Identification-based first-order algorithms for distributed learning

Dmitry Grishchenko

ICCOPT 2019

6 August 2019, Berlin

My supervisors

F. Iutzeler LJK

J. Malick CNRS, LJK

My supervisors

F. Iutzeler LJK

J. Malick CNRS, LJK

My student

L. Kochiev MIPT

Problem

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^M f_i(x) + r(x)$$

Problem

convex L-smooth

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^M f_i(x) + r(x)$$

convex non-smooth

Problem

convex L-smooth

$$\min_{x \in \mathbb{R}^n} \sum_{i=1}^M f_i(x) + r(x)$$

convex non-smooth

In ML context

$$f_i(x) = \sum_{j \in S_i} \pi_i l_j(x)$$

 l_j – loss associated with $j^{\rm th}$ example

 $\ddot{S}_i - i^{\text{th}}$ set of examples

 π_i – proportion of examples in $i^{\rm th}$ set

Data proportions π_1 π_2 π_3 π_M

Data proportions π_1 π_2 π_3 π_M

Centralized

Data proportions

 π_1

 π_2

 π_3

 π_{M}

1

2

3

M

Parallel

Distributed

Parallel

Distributed

Machines

Parallel Distributed

Machines Single Multiple

Parallel Distributed
Single Multiple

Storage

Machines

Parallel Distributed

Machines Single Multiple

Storage Limited Unlimited

Parallel

Distributed

Machines

Single

Multiple

Storage

Limited

Unlimited

Communications

Parallel Distributed

Machines Single Multiple

Storage Limited Unlimited

Communications Free Bottleneck

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free Bottleneck

Multiple

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free Bottleneck

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free Bottleneck

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free Bottleneck

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free Bottleneck

Result

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free Bottleneck

Result

Computations are cheaper than communications

Parallel Distributed

Machines Single

Storage Limited Unlimited

Communications Free Bottleneck

Result

Computations are cheaper than communications

Let's make communications cheaper!

Not so many fans

Not so many fans

Everyone can go to the stadium and watch the game

Not so many fans

Not so many fans

Everyone can go to the stadium and watch the game

A lot of fans

Not so many fans

Everyone can go to the stadium and watch the game

A lot of fans

Need to make a ballot for the tickets

Not so many fans

Everyone can go to the stadium and watch the game

A lot of fans

Need to make a ballot for the tickets

<u>sparsification</u>

Synchronous?

Drawbacks of synchronous algorithms

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

A lot of communications in one time

Master machine communicates with all machines in the same time

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

A lot of communications in one time

Master machine communicates with all machines in the same time

Let's kill 2 birds with one stone

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

A lot of communications in one time

Master machine communicates with all machines in the same time

Let's kill 2 birds with one stone

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

A lot of communications in one time

Master machine communicates with all machines in the same time

Let's kill 2 birds with one stone

convex L-smooth

Problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) + r(x)$$

convex non-smooth

convex L-smooth

Problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) + r(x)$$

convex non-smooth

Call for

First-order proximal methods (for example Proximal Gradient Descent)

convex L-smooth

Problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) + r(x)$$

convex non-smooth

Call for

First-order proximal methods (for example Proximal Gradient Descent)

$$x^{k+1} = \mathbf{prox}(x^k - \gamma \nabla f(x^k))$$

convex L-smooth

Problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) + r(x)$$

convex non-smooth

Call for

First-order proximal methods (for example Proximal Gradient Descent)

$$x^{k+1} = \mathbf{prox}(x^k - \gamma \nabla f(x^k))$$

where
$$\underset{\gamma g}{\mathbf{prox}}(x) := \underset{u}{\operatorname{argmin}} \left\{ g(u) + \frac{1}{2\gamma} \|u - x\|^2 \right\}$$

convex L-smooth

Problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) + r(x)$$

convex non-smooth

Call for

First-order proximal methods (for example Proximal Gradient Descent)

$$x^{k+1} = \mathbf{prox}(x^k - \gamma \nabla f(x^k))$$

where
$$\underset{\gamma g}{\mathbf{prox}}(x) := \underset{u}{\operatorname{argmin}} \left\{ g(u) + \frac{1}{2\gamma} \|u - x\|^2 \right\}$$

In synchronous case it will be the same

Each worker send its gradient and master calculate the weighted average

convex L-smooth

Problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) + r(x)$$

convex non-smooth

Call for

First-order proximal methods (for example Proximal Gradient Descent)

$$x^{k+1} = \mathbf{prox}(x^k - \gamma \nabla f(x^k))$$

$$\text{ where } \quad \mathbf{prox}_{\gamma g}(x) := \mathop{\rm argmin}_{u} \left\{ g(u) + \frac{1}{2\gamma} \|u - x\|^2 \right\}$$

In synchronous case it will be the same

Each worker send its gradient and master calculate the weighted average

$$F(x) = \sum_{i=1}^{M} \pi_i f_i(x)$$

convex L-smooth

Problems of the form

$$\min_{x \in \mathbb{R}^n} f(x) + r(x)$$

convex non-smooth

Call for

First-order proximal methods (for example Proximal Gradient Descent)

$$x^{k+1} = \mathbf{prox}(x^k - \gamma \nabla f(x^k))$$

where
$$\underset{\gamma g}{\mathbf{prox}}(x) := \underset{u}{\operatorname{argmin}} \left\{ g(u) + \frac{1}{2\gamma} \|u - x\|^2 \right\}$$

In synchronous case it will be the same

Each worker send its gradient and master calculate the weighted average

$$F(x) = \sum_{i=1}^{M} \pi_i f_i(x)$$

$$\nabla F(x) = \sum_{i=1}^{M} \pi_i \nabla f_i(x)$$

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

k - the number of updates master receive

 $i^k\text{-}$ an agent, that communicated with master at time

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

k - the number of updates master receive

 i^k - an agent, that communicated with master at time

Let's define a worker i timeline

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

k - the number of updates master receive

 i^k - an agent, that communicated with master at time

Let's define a worker i timeline

 d_i^k - time elapsed from the last update

 D_i^k - the time of penultimate update

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

k - the number of updates master receive

 $i^k ext{-}$ an agent, that communicated with master at time

Let's define a worker i timeline

 d_i^k - time elapsed from the last update

Mishchenko, K., Iutzeler, F., Malick, J., & Amini, M. R. (2018, July). A delay-tolerant proximal-gradient algorithm for distributed learning. In *International Conference on Machine Learning* (pp. 3584-3592).

If dimension is very big, it is very expansive to send full gradient

Mishchenko, K., Iutzeler, F., Malick, J., & Amini, M. R. (2018, July). A delay-tolerant proximal-gradient algorithm for distributed learning. In *International Conference on Machine Learning* (pp. 3584-3592).

If dimension is very big, it is very expansive to send full gradient

If regulariser is sparsity enforcing, no need to sparsify master worker

Mishchenko, K., Iutzeler, F., Malick, J., & Amini, M. R. (2018, July). A delay-tolerant proximal-gradient algorithm for distributed learning. In *International Conference on Machine Learning* (pp. 3584-3592).

Fadili J., Malick J., Peyré G. Sensitivity analysis for mirror-stratifiable convex functions SIAM Journal on Optimization. - 2018. - T. 28. - №. 4. - C. 2975-3000.

 $\overline{x}^k \leftarrow \overline{x}^{k-1} + \pi_i [\Delta^k]_{\mathbf{S}^{k-d_i^k}}$ $x^k \leftarrow \operatorname{prox}_{\gamma r}(\overline{x}^k)$

Choose sparsity mask S^k

SLAVE i

 $x_i^+ = x^{k-d_i^k} - \gamma \nabla f_i(x^{k-d_i^k})$ $\Delta^k \leftarrow x_i^+ - x_i$ $x_i \leftarrow x_i + [\Delta^k]_{\mathbf{S}^{k-d_i^k}}$

SLAVE M

Computation of $\nabla f_M(x^{k-d_M^k})$ in process.

SLAVE 1

Computation of $\nabla f_1(x^{k-d_1^k})$ in process.

 $\overline{x}^k \leftarrow \overline{x}^{k-1} + \pi_i [\Delta^k]_{\mathbf{S}^{k-d_i^k}}$ $x^k \leftarrow \operatorname{prox}_{\gamma r}(\overline{x}^k)$ Choose sparsity mask \mathbf{S}^k

SLAVE 1

Computation of $\nabla f_1(x^{k-d_1^k})$ in process.

SLAVE i

$$x_i^+ = x^{k-d_i^k} - \gamma \nabla f_i(x^{k-d_i^k})$$
$$\Delta^k \leftarrow x_i^+ - x_i$$
$$x_i \leftarrow x_i + [\Delta^k]_{\mathbf{S}^{k-d_i^k}}$$

SLAVE M

Computation of $\nabla f_M(x^{k-d_M^k})$ in process.

 $\overline{x}^k \leftarrow \overline{x}^{k-1} + \pi_i [\Delta^k]_{\mathbf{S}^{k-d_i^k}}$ $x^k \leftarrow \operatorname{prox}_{\gamma r}(\overline{x}^k)$ Choose sparsity mask \mathbf{S}^k

SLAVE 1

Computation of $\nabla f_1(x^{k-d_1^k})$ in process.

SLAVE i

$$x_i^+ = x^{k-d_i^k} - \gamma \nabla f_i(x^{k-d_i^k})$$
$$\Delta^k \leftarrow x_i^+ - x_i$$
$$x_i \leftarrow x_i + [\Delta^k]_{\mathbf{S}^{k-d_i^k}}$$

SLAVE M

Computation of $\nabla f_M(x^{k-d_M^k})$ in process.

How to chose the sparsity mask?

How to chose the sparsity mask?

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems SIAM Journal on Optimization. - 2012. - T. 22. - №. 2. - C. 341-362.

How to chose the sparsity mask?

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems SIAM Journal on Optimization. - 2012. - T. 22. - №. 2. - C. 341-362.

1 wave - most loyal fans (the biggest amount of games visited)

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

Most loyal have probability 1, all the others much smaller

•

^{* -} l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection for l₁-regularizer

^{* -} l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection for l₁-regularizer

1 - select all the coordinates that are in master's current iterate

•

^{* -} l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection for l₁-regularizer

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with some probabilities

-

^{* -} l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection for l₁-regularizer

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with some probabilities

As a result, all the coordinates from the support of the final solution would be selected

^{* -} l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection for l₁-regularizer

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with some probabilities

As a result, all the coordinates from the support of the final solution would be selected Dimension reductions without loss of speed (but only from some <u>finite</u> moment of time)

•

^{* -} l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection for l₁-regularizer

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with some probabilities

As a result, all the coordinates from the support of the final solution would be selected

Dimension reductions without loss of speed (but only from some finite moment of time)

Theoretical result (for s.c. objective)

$$\mathbb{E}\|x_i^k - x_i^{\star}\|^2 \le \left(2 - 2\frac{\gamma\mu L}{\mu + L} - \min_i p_i\right) \max_{j=1,..,M} \mathbb{E}\left\|x_j^{k - D_i^k} - x_j^{\star}\right\|^2$$

where $k\in [k_m,k_{m+1})$, $k_{m+1}=\min\left\{k:k-D_i^k\geq k_m \text{ for all } i\right\}$, and stepsize $\gamma\in (0,2/(\mu+L)]$.

Grishchenko, D., Iutzeler, F., Malick, J., & Amini, M. R. (2018). Asynchronous Distributed Learning with Sparse Communications and Identification. *arXiv preprint arXiv:1812.03871*.

^{* -} l₁-regularizer enforces coordinate sparsity

$$\mathbb{E}\|x_i^k - x_i^{\star}\|^2 \le \left(2 - 2\frac{\gamma\mu L}{\mu + L} - \min_i p_i\right) \max_{j=1,..,M} \mathbb{E}\left\|x_j^{k - D_i^k} - x_j^{\star}\right\|^2$$

15

$$\mathbb{E}\|x_i^k - x_i^{\star}\|^2 \le \left(2 - 2\frac{\gamma\mu L}{\mu + L} - \min_i p_i\right) \max_{j=1,..,M} \mathbb{E}\left\|x_j^{k - D_i^k} - x_j^{\star}\right\|^2$$

should be less than 1!

$$\mathbb{E}\|x_i^k - x_i^{\star}\|^2 \le \left(2 - 2\frac{\gamma\mu L}{\mu + L} - \min_i p_i\right) \max_{j=1,..,M} \mathbb{E}\left\|x_j^{k - D_i^k} - x_j^{\star}\right\|^2$$

Bound on the minimal probability that depends on problem conditioning

$$\min_{i} p_i \ge 1 - \frac{2\gamma\mu L}{\mu L}$$

$$\mathbb{E}\|x_i^k - x_i^{\star}\|^2 \le \left(2 - 2\frac{\gamma\mu L}{\mu + L} - \min_i p_i\right) \max_{j=1,..,M} \mathbb{E}\left\|x_j^{k - D_i^k} - x_j^{\star}\right\|^2$$

Bound on the minimal probability that depends on problem conditioning

$$\min_{i} p_i \ge 1 - \frac{2\gamma\mu L}{\mu L}$$

For ill-conditioned problems there is NO sparsification

$$\mathbb{E}\|x_i^k - x_i^{\star}\|^2 \le \left(2 - 2\frac{\gamma\mu L}{\mu + L} - \min_i p_i\right) \max_{j=1,..,M} \mathbb{E}\left\|x_j^{k - D_i^k} - x_j^{\star}\right\|^2$$

Bound on the minimal probability that depends on problem conditioning

$$\min_{i} p_i \ge 1 - \frac{2\gamma\mu L}{\mu L}$$

For ill-conditioned problems there is NO sparsification

Let us use l2-regularizer to recondition the initial problem

Catalyst

Catalyst

Input: $x_0 \in \mathbb{R}^n$, smoothing parameter κ , optimization method \mathcal{M} , $y_0 = x_0$, $q = \frac{\mu}{\mu + \kappa}$

Output: $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$

while desired stopping criterion is not satisfied do

Find x_k using \mathcal{M}

$$\boldsymbol{x_k} \in \underset{x \in \mathbb{R}^n}{\operatorname{argmin}}_{\boldsymbol{\epsilon^k}} \{ h_{\boldsymbol{k}}(x) \triangleq f(x) + \frac{\boldsymbol{\kappa}}{2} \|x - \boldsymbol{y_{k-1}}\|^2 \}$$

Compute $\alpha_k \in (0;1)$ from $\alpha_k^2 = (1 - \alpha_k)\alpha_{k-1}^2 + q\alpha_k$

Compute y_k using β_k from (0,1)

$$y_k = x_k + \beta_k(x_k - x_{k-1}),$$

where

$$\beta_{k} = \frac{\alpha_{k-1}(1 - \alpha_{k-1})}{\alpha_{k-1}^{2} + \alpha_{k}}$$

end

Lin, H., Mairal, J., & Harchaoui, Z. (2015). A universal catalyst for first-order optimization. In *Advances in neural information processing systems* (pp. 3384-3392).

Catalyst

Input: $x_0 \in \mathbb{R}^n$, smoothing parameter κ , optimization method \mathcal{M} , $y_0 = x_0$, $q = \frac{\mu}{\mu + \kappa}$

Output: $x^* \in \operatorname{argmin}_{x \in \mathbb{R}^n} f(x)$

while desired stopping criterion is not satisfied do

Find x_k using \mathcal{M}

$$\boldsymbol{x_k} \in \underset{x \in \mathbb{R}^n}{\operatorname{argmin}}_{\boldsymbol{\epsilon^k}} \{ h_{\boldsymbol{k}}(x) \triangleq f(x) + \frac{\boldsymbol{\kappa}}{2} \|x - \boldsymbol{y_{k-1}}\|^2 \}$$

Compute $\alpha_k \in (0;1)$ from $\alpha_k^2 = (1 - \alpha_k)\alpha_{k-1}^2 + q\alpha_k$

Compute y_k using β_k from (0,1)

$$y_k = x_k + \beta_k(x_k - x_{k-1}),$$

where

$$\beta_{k} = \frac{\alpha_{k-1}(1 - \alpha_{k-1})}{\alpha_{k-1}^{2} + \alpha_{k}}$$

end

The only requirement: method \mathcal{M} that solves $\min_x h_k(x)$ with $\underline{\text{linear}}$ rate.

Lin, H., Mairal, J., & Harchaoui, Z. (2015). A universal catalyst for first-order optimization. In *Advances in neural information processing systems* (pp. 3384-3392).

WORKER i

Initialize κ

Receive x, y from master

Initialize $x_i = x_i^+ = x$ Update objective function

$$h_i(\cdot) = f_i(\cdot) + \frac{\kappa}{2} \|\cdot -y\|^2$$

while not interrupted by master do

$$[x_i^+]_{\mathbf{S}} \leftarrow [x - \gamma \nabla h_i(x)]_{\mathbf{S}}$$

$$\Delta \leftarrow x_i^+ - x_i$$

Send $[\Delta]_{\mathbf{S}}$ to master

$$[x_i]_{\mathbf{S}} \leftarrow [x_i^+]_{\mathbf{S}}$$

Receive x and S from master

end

WORKER i

Initialize κ

Receive x, y from master

Initialize $x_i = x_i^+ = x$ Update objective function

$$h_i(\cdot) = f_i(\cdot) + \frac{\kappa}{2} \|\cdot -y\|^2$$

while not interrupted by master do

$$[x_i^+]_{\mathbf{S}} \leftarrow [x - \gamma \nabla h_i(x)]_{\mathbf{S}}$$

$$\Delta \leftarrow x_i^+ - x_i$$

Send $[\Delta]_{\mathbf{S}}$ to master

$$[x_i]_{\mathbf{S}} \leftarrow [x_i^+]_{\mathbf{S}}$$

Receive x and S from master

end

MASTER

```
Reinitialize k = 1, \bar{x}_{l}^{0} = y_{l-1}
Broadcast x_{l}^{0} = \mathbf{prox}_{\gamma g} \left( \bar{x}_{l}^{0} \right), y_{l-1}
while stopping criterion is not satisfied do
       Receive [\Delta^k]_{\mathbf{S}^{k-D_{ik}^k}} from agent i^k
      \bar{x}_{\boldsymbol{l}}^{k} \leftarrow \bar{x}_{\boldsymbol{l}}^{k-1} + \pi_{i} [\Delta^{k}]_{\mathbf{S}^{k-D_{ik}^{k}}}
       x_{\boldsymbol{l}}^k \leftarrow \mathbf{prox}_{\gamma r}(\bar{x}_{\boldsymbol{l}}^k)
       Draw sparsity mask \mathbf{S}^k
       Send x_l^k, \mathbf{S}^k to agent i^k
       k \leftarrow k + 1
end
while some workers compute do
       Receive [\Delta^k]_{\mathbf{S}^{k-D_{i^k}^k}} from agent i^k
       \bar{x}_{l}^{k} \leftarrow \bar{x}_{l}^{k-1} + \pi_{i} [\Delta^{k}]_{\mathbf{S}^{k-D_{ik}^{k}}}
       Stop worker
\mathbf{end}
\boldsymbol{x_l} \leftarrow \mathbf{prox}_{\gamma q}(\bar{x}_l^k)
```


WORKER i

Initialize κ

Receive x, y from master

Initialize $x_i = x_i^+ = x$ Update objective function

$$h_i(\cdot) = f_i(\cdot) + \frac{\kappa}{2} \|\cdot -y\|^2$$

while not interrupted by master do

$$[x_i^+]_{\mathbf{S}} \leftarrow [x - \gamma \nabla h_i(x)]_{\mathbf{S}}$$

 $\Delta \leftarrow x_i^+ - x_i$

Send $[\Delta]_{\mathbf{S}}$ to master

$$[x_i]_{\mathbf{S}} \leftarrow [x_i^+]_{\mathbf{S}}$$

Receive x and S from master

end

Required size of update*

^{*-}in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability

Required size of update*

Bound on probability to guarantee such size

^{* -} in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability

Required size of update*

Bound on probability to guarantee such size

^{*-} in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability

Required size of update*

Bound on probability to guarantee such size

Requires more restarts than Catalyst with optimal parameter κ^* if minimal probability is small enough and it's fair to tell about sparsification

^{* -} in the beginning (when the support is big enough) coordinates from the support could be also selected with some probability

after identification happened

after identification happened

ho - the sparsity of the optimal solution

after identification happened

ho - the sparsity of the optimal solution

ho n - the size of communication from master

after identification happened

ho - the sparsity of the optimal solution

ho n - the size of communication from master

$$|\boldsymbol{S}^k| \geq \rho n (1 + (1 - \rho) \min_i p_i)$$
 - ... from worker

after identification happened

 ρ - the sparsity of the optimal solution

ho n - the size of communication from master

$$|S^k| \ge \rho n(1+(1-\rho)\min_i p_i)$$
 - ... from worker

Results:

No reason to select coordinates with different probabilities

after identification happened

ho - the sparsity of the optimal solution

ho n - the size of communication from master

$$|oldsymbol{S}^k| \geq
ho n(1+(1-
ho)\min_i p_i)$$
 - ... from worker

Results:

No reason to select coordinates with different probabilities An optimal uniform probability is the following

$$p^{\star} = \frac{2\rho}{1 + 3\rho}$$

Theoretical Result

Theoretical Result

Theorem (s.c. case)

Consider the sparsity of the optimal solution ρ .

Choose
$$p=\frac{2\rho}{1+3\rho}$$
, and corresponding $\ \kappa=\frac{(1-p)L-\mu}{p}$.

Then for any
$$\ \gamma \in \left(0, \frac{2}{\mu + L + 2\kappa}\right]$$
 ASPY-DR algorithm

converges
$$\tilde{O}\left(\sqrt{\frac{1+\rho}{\rho}}\right)$$
 times faster in communications

metrics than nonsparsified one.

Software: Python + MPI4py Dataset: Madelon

Amount of workers: 4 Final sparsity: 0.05

Problem: standard regularized logistic regression Optimal probability: pprox 0.9

Software: Python + MPI4py

Amount of workers: 4

Problem: standard regularized logistic regression

Dataset: Madelon

Final sparsity: 0.05

Optimal probability: ≈ 0.9

Software: Python + MPI4py

Amount of workers: 4

Problem: standard regularized logistic regression

Dataset: Madelon

Final sparsity: 0.05

Optimal probability: ≈ 0.9

Thank You For Your Attention