
Randomized Proximal Algorithm
with

Automatic Dimension Reduction

Dmitry GRISHCHENKO
grishchenko.org

joint work with

F. IUTZELER, J. MALICK, M.-R. AMINI
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Distributed setup

• one master machine

• M worker machines

• data stored locally
on worker machines

• communication cost
proportional to sending data size

Master

Worker 1

Worker 2
...

Worker M

data S1

data S2

...

data SM

Communication
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Distributed Learning

Global objective:

min
x∈Rd

1

m

m∑
j=1

`j(x) + g(λ, x)︸ ︷︷ ︸
g(x)

m examples individual losses (`j)

empirical risk minimization regularizer g

Local data:

min
x∈Rd

M∑
i=1

πifi(x)︸ ︷︷ ︸
convex, smooth

+ g(x)︸︷︷︸
convex, nonsmooth

M data blocks stored locally local functions (fi)

fi(x) = 1
|Si|

∑
j∈Si

`j(x)

proportion πi = |Si|/m at i
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Review on Proximal Gradient

Problem:
min
x∈Rn

f(x) + g(x),

• f(x) is differentiable, L−smooth and µ−strongly convex

• g(x) is non-smooth but convex

Algorithm:

xk+1 = prox
γg

(xk − γ∇f(xk)),

where proximity operator of g

prox
γg

(x) := argmin
u

{
g(u) +

1

2γ
‖u− x‖2

}
Convergence result:

Let f be L-smooth and µ-strongly convex. Then, for γ ∈ (0, 2/(µ+ L)],

‖xk − x?‖2 ≤ (1− α)k‖x0 − x?‖2,

for α = 2γµL/(µ+ L)
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Distributed Proximal Gradient

Problem:

min
x∈Rd

M∑
i=1

πifi(x)︸ ︷︷ ︸
F (x)

+g(x)

Gradient property:

∇F (x) =
M∑
i=1

πi∇fi(x)

Algorithm: (on each iteration)

Master gathers local variables

xk+1 =
∑M
i=1 πix

k+1/2
i = xk−γ∇F (x)

Master performs a proximity operation

xk+1
1 = · · · = xk+1

M = proxγg

(
xk+1

)
Worker i updates local variable

x
k+1/2
i = xki − γ∇fi(x

k
i )

for all i = 1, ..,M

It’s exactly proximal gradient descent

k = number of master updates

Convergence rate:

Let each fi be Li-smooth and µi-strongly convex. Then, for γ ∈ (0, 2/(µ+L)] and
L = max{Li}, µ = min{µi},

‖xk − x?‖2 ≤ (1− α)k‖x0 − x?‖2
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Communication Problem

Master

Worker 1

Worker 2
...

Worker M

Communication

∇f1

∇f2

...

∇fM

Map

Master

Worker 1

Worker 2
...

Worker M

Communication

∑M
i=1 πi·

proxγg

Reduce

Question:
What if dimension d is extremely high?

Answer:
Sparsify data before sending!
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Identification
[Malick-Fadili-Peyré’ 18]

Let (uk) be a sequence converging to u?, verifying

xk := prox
γg

(uk)→ x?

where x? is the unique minimizer of the minx
∑M
i=1 πi fi(x) + g(x).

Then, there is K <∞ such that:

• g(x) = λ1‖x‖1.

supp(x?) ⊆ supp(xk) ⊆ supp(y?ε ) for all k ≥ K,
where supp(x) = {i ∈ [1, n] |xi 6= 0}

• g(x) = 1-dimensional TV(x) =
∑n−1
i=1 |xi+1 − xi|

jumps(x?) ⊆ jumps(xk) ⊆ jumps(y?ε ) for all k ≥ K
where jumps(x) =

{
i ∈ [1, n− 1] |xi 6= xi+1

}
where y?ε = proxγ(1−ε)g(u? − x?) for any ε > 0.
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Rightwards Sparsification

Master

Worker 1

Worker 2
...

Worker M

Communication

∇f1

∇f2

...

∇fM

QUESTION:
What identification gives to us?

ANSWER:
For some regularizers proximal gradient points become sparse in some meaning:

• for `1 regularizer - coordinate sparsity (small amount of nonzero coordinates)

• for TV regularizer - block sparsity (small amount of jumps)

CONCLUSION:

• master sends proxγg which is “sparse”

• rightwards communications are “sparse”
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Leftwards Sparsification

Master

Worker 1

Worker 2
...

Worker M

Communication

∑M
i=1 πi·

proxγg

Ideas of sparsification:

• proxγg x
k
i is not an option to send –

∑
i αi proxγg x

k
i leads to nothing!

• master knows x̄k – we can send only gradient from slave!

QUESTION: How to sparsify gradient?

Option I:[Tong Zhang’ 17]
Use stochastic gradient against real one

Drawback:
• decreasing stepsize

• full gradient computation

Option II:[Peter Richtárik’ 16]
Use parallel coordinate descent

Drawback:
• block-separability

• shared memory

Our option: Use coordinate descent based algorithm
taking into account sparsity structure of final solution
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Some Notations

Projections:
Let P be a set of orthogonal projections {Pi} such that:

• Pi is linear operator

• (∀ i : Pi (z?) = Pi (y?))⇔ z? = y?

Expectation:
We select P ∈ P random with the same probabilities
Let us denote by P̄ = EP
Also let Q̄ = P̄−

1
2

Examples:

Subspaces with sparsity equal to s:

`1 s−dimensional subspace with fixed supp of size s

TV s−dimensional subspace with fixed jumps of size s− 1

Projections P:

`1 set of diagonal matrices with s ones and all other zeros

TV set of projections, each projection is block-diagonal
matrix with s−blocks; each blocks is fully filled
with values equal to inverse of block’s size
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Randomized Strata Descent

Master Initialization

Initialize z0

Fix ”measure of sparsity dimension”, generate set P and calculate P̄, Q̄
Compute x0 = proxγg

(
Q̄−1

(
z0
))

Randomly select P0 and send P0, x
0, Q̄ to workers

Master

Initialize

for k=1,.. do

Receive yk−1
i from workers

z
k

= z
k−1 − Pk−1(z

k−1
)

+ Pk−1

(
Q̄
(
x
k−1

))
+

M∑
i=1

πiy
k−1
i

xk = proxγg

(
Q̄−1

(
zk
))

Randomly select Pk

Send xk, Pk to workers

end for

C
O
M
M
U
N
I
C
A
T
I
O
N

Worker i

for k=0,.. do

Receive xk, Pk

yki =

PkQ̄
(
γ∇fi(xk)

)
Send yki to master

end for

Is it “coordinate descent”?

• yes because we use coordinate selection in gradient

• no because we don’t need regularizer to be separable
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Experiments for LASSO
Randomized Strata Descent

• Synthetic LASSO problem

min
1

2
‖Ax− b‖22 + λ1‖x‖1

dimension d = 30, λ1 = 0.1

• 10 machines (1CPU, 1GB) in a
cluster

• Data divided uniformly

Analysis

positive Amount of iterations almost
proportional to amount of
coordinates selected

positive Identification works as expected

negative There is no relation between mask
recognition and algorithm speedup
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Experiments for Least Squares with 1-d TV Regularizer
Randomized Strata Descent

• Synthetic Least Squares problem
with 1− d TV regularizer

min
1

2
‖Ax− b‖22 + λ1

d−1∑
i=1

|xi − xi+1|

dimension d = 30, λ1 = 0.5

• 10 machines (1CPU, 1GB) in a
cluster

• Data divided uniformly

Analysis

positive Identification works as expected

negative Extremely big amount iterations for
sparsified versions, does not
correlate even with jumps’ amount

negative There is no relation between mask
recognition and algorithm speedup
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Randomized Strata Descent with Automatic Dimension Reduction

Master

Initialize
for k=1,p+1,.. do

calculate sparsity structure of xk – Sk
if Sk 6= Sk−p then

Generate new P, P̄, Q̄
w.r.t to Sk and s-extra

Send Sk to slave
end if
for l=0,..,p-1 do

Receive y
k+l−1
i

from workers

z
k+l

= z
k+l−1 − Pk+l−1(z

k+l−1
)

+ Pk+l−1

(
Q̄
(
x
k+l−1

))
+
M∑
i=1

πiy
k+l−1
i

xk+l+1 = proxγg

(
Q̄−1

(
zk+l

))
Randomly select Pk+l

Send xk+l+1, Pk+l to workers

end for
end for

C
O
M
M
U
N
I
C
A
T
I
O
N

Worker i

for k=0,.. do
if Sk recieved then

Generate new
P, P̄, Q̄

w.r.t to Sk
and s-extra

end if
Receive xk, Pk

yki = PkQ̄
(
γ∇fi(x

k)
)

Send yki to master
end for

Is it “coordinate descent”?

• no because we use adapted coordinate selection in gradient

• no because we don’t need regularizer to be separable
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Experiments for Least Squares with 1-d TV Regularizer
Randomized Strata Descent with Automatic Dimension Reduction

• Synthetic Least Squares problem
with 1− d TV regularizer

min
1

2
‖Ax− b‖22 + λ1

d−1∑
i=1

|xi − xi+1|

dimension d = 30, λ1 = 0.5

• 10 machines (1CPU, 1GB) in a
cluster

• Data divided uniformly

Analysis

positive Identification works as expected

positive Small amount of iterations

positive Mask recognition leads to fast
convergence
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Convergence Rate
Randomized Strata Descent with Automatic Dimension Reduction

Theorem
Let each fi be Li-smooth and µi-strongly convex. Then, for γ ∈ (0, 2/(µ+ L)],
and L = max{Li}, µ = min{µi}

E
[
‖xk − x?‖22

]
≤
(

1− λmin
2γµL

µ+ L

)k
‖x0 − x?‖22,

where λmin is minimal eigen value of P̄

Fixed stepsize same as in standard Proximal Gradient

Example: `1 regularizer
• λmin = pmin, where pmin is minimal probability for coordinate to be chosen

• proxγg is separable

• Q̄ - diagonal matrix
Q̄ could be skipped in the algorithm
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Conclusion
Results

• Algorithm with automatic dimension reduction
• Importance of identification in sparsification

Future plans

• Asynchronous version
• Approximate computation of Q̄
• Scarse communications

make less exchanges

• Non-strongly-convex functions (fi)

Thank you!
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