Randomized Proximal Algorithm with Automatic Dimension Reduction

Dmitry GRISHCHENKO grishchenko.org

joint work with

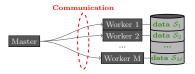
F. IUTZELER, J. MALICK, M.-R. AMINI

Université Grenoble Alpes

Demi-journée des doctorants 2018, Grenoble

Distributed setup

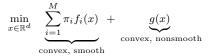
- one **master** machine
- *M* worker machines
- data stored locally on worker machines
- communication cost proportional to sending data size



Global objective:

m examples individual losses (ℓ_j) empirical risk minimization regularizer g

Local data:



$$\begin{split} M \text{ data blocks stored locally local functions } (f_i) \\ f_i(x) &= \frac{1}{|\mathcal{S}_i|} \sum_{j \in \mathcal{S}_i} \ell_j(x) \\ \text{proportion } \pi_i &= |\mathcal{S}_i|/m \text{ at } i \end{split}$$

Review on Proximal Gradient

Problem:

$$\min_{x\in\mathbb{R}^n} \ f(x) + g(x),$$

- f(x) is differentiable, L-smooth and μ -strongly convex
- g(x) is non-smooth but convex

Algorithm:

$$x^{k+1} = \operatorname{\mathbf{prox}}_{\gamma g}(x^k - \gamma \nabla f(x^k)),$$

where proximity operator of g

$$\mathop{\mathbf{prox}}_{\gamma g}(x) := \mathop{\mathrm{argmin}}_{u} \left\{ g(u) + \frac{1}{2\gamma} \left\| u - x \right\|^2 \right\}$$

Convergence result:

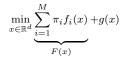
Let f be L-smooth and μ -strongly convex. Then, for $\gamma \in (0, 2/(\mu + L)]$,

$$||x^{k} - x^{\star}||^{2} \le (1 - \alpha)^{k} ||x^{0} - x^{\star}||^{2},$$

for $\alpha = 2\gamma \mu L/(\mu+L)$

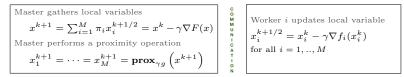
Distributed Proximal Gradient

Problem:



Gradient property: $\nabla F(x) = \sum_{i=1}^{M} \pi_i \nabla f_i(x)$

Algorithm: (on each iteration)



It's exactly proximal gradient descent

k = number of master updates

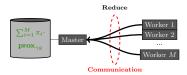
Convergence rate:

Let each f_i be L_i -smooth and μ_i -strongly convex. Then, for $\gamma \in (0, 2/(\mu + L)]$ and $L = \max\{L_i\}, \ \mu = \min\{\mu_i\},$

$$\|x^{k} - x^{\star}\|^{2} \le (1 - \alpha)^{k} \|x^{0} - x^{\star}\|^{2}$$

4 / 16

Communication Problem



Question: What if dimension d is extremely high?

Answer: Sparsify data before sending!

Identification [Malick-Fadili-Peyré' 18]

Let (u^k) be a sequence converging to u^* , verifying

$$x^k := \mathop{\mathbf{prox}}_{\gamma g}(u^k) \to x^\star$$

where x^{\star} is the unique minimizer of the $\min_{x} \sum_{i=1}^{M} \pi_{i} f_{i}(x) + g(x)$.

Then, there is $K < \infty$ such that:

• $g(x) = \lambda_1 ||x||_1.$

$$\operatorname{supp}(x^{\star}) \subseteq \operatorname{supp}(x^k) \subseteq \operatorname{supp}(y_{\varepsilon}^{\star}) \quad \text{for all } k \ge K,$$

where $supp(x) = \{i \in [1, n] | x_i \neq 0\}$

•
$$g(x) = 1$$
-dimensional $\mathbf{TV}(x) = \sum_{i=1}^{n-1} |x_{i+1} - x_i|$

$$\operatorname{jumps}(x^{\star}) \subseteq \operatorname{jumps}(x^{k}) \subseteq \operatorname{jumps}(y_{\varepsilon}^{\star}) \qquad \text{for all } k \geq K$$

where $\operatorname{jumps}(x) = \{i \in [1, n-1] | x_i \neq x_{i+1}\}$

where $y_{\varepsilon}^{\star} = \mathbf{prox}_{\gamma(1-\varepsilon)g}(u^{\star} - x^{\star})$ for any $\varepsilon > 0$.

Rightwards Sparsification

QUESTION: What identification gives to us?

ANSWER:

For some regularizers proximal gradient points become sparse in some meaning:

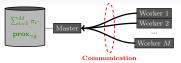
- for ℓ_1 regularizer coordinate sparsity (small amount of nonzero coordinates)
- for TV regularizer block sparsity (small amount of jumps)

CONCLUSION:

- master sends $\mathbf{prox}_{\gamma g}$ which is "sparse"
- rightwards communications are "sparse"

7/16

Leftwards Sparsification



Ideas of sparsification:

- $\mathbf{prox}_{\gamma g} x_i^k$ is not an option to send $-\sum_i \alpha_i \mathbf{prox}_{\gamma g} x_i^k$ leads to nothing!
- master knows \bar{x}^k we can send only gradient from slave!

QUESTION: How to sparsify gradient?

Option I: [Tong Zhang' 17]

Use stochastic gradient against real one

Drawback:

- decreasing stepsize
- full gradient computation

Option II: [Peter Richtárik' 16] Use parallel coordinate descent

Drawback:

- block-separability
- shared memory

Our option: Use coordinate descent based algorithm taking into account sparsity structure of final solution

Some Notations

Projections:

Let \mathcal{P} be a set of orthogonal projections $\{P_i\}$ such that:

- P_i is linear operator
- $(\forall i : P_i(z^{\star}) = P_i(y^{\star})) \Leftrightarrow z^{\star} = y^{\star}$

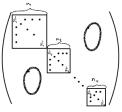
Expectation:

We select $P \in \mathcal{P}$ random with the same probabilities Let us denote by $\bar{\mathcal{P}} = \mathbb{E}P$ Also let $\bar{\mathcal{Q}} = \bar{\mathcal{P}}^{-\frac{1}{2}}$

Examples:

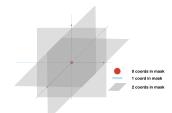
Subspaces with sparsity equal to s:

- $\ell_1 \;\; s{\rm -dimensional}$ subspace with fixed ${\bf supp}$ of size s
- TV s-dimensional subspace with fixed jumps of size s 1



Projections \mathcal{P} :

- $\ell_1 \,$ set of diagonal matrices with s ones and all other zeros
- TV set of projections, each projection is block-diagonal matrix with s-blocks; each blocks is fully filled with values equal to inverse of block's size



Randomized Strata Descent

0

A T

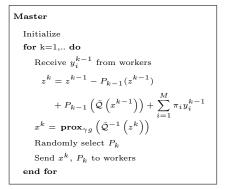
Т

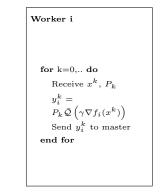
0

Ν

Master Initialization

Initialize z^0 Fix "measure of sparsity dimension", generate set \mathcal{P} and calculate $\tilde{\mathcal{P}}$, $\tilde{\mathcal{Q}}$ Compute $x^0 = \mathbf{prox}_{\gamma g} \left(\tilde{\mathcal{Q}}^{-1} \left(z^0 \right) \right)$ Randomly select P_0 and send P_0 , x^0 , $\tilde{\mathcal{Q}}$ to workers





Is it "coordinate descent"?

- yes because we use coordinate selection in gradient
- no because we don't need regularizer to be separable

Experiments for LASSO

Randomized Strata Descent

• Synthetic LASSO problem

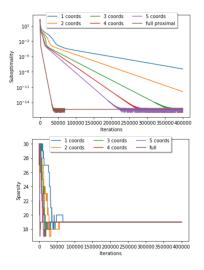
$$\min \frac{1}{2} \|Ax - b\|_2^2 + \lambda_1 \|x\|_2$$

dimension $d = 30, \lambda_1 = 0.1$

- 10 machines (1CPU, 1GB) in a cluster
- Data divided uniformly

Analysis

- positive Amount of iterations almost proportional to amount of coordinates selected
- positive Identification works as expected
- negative There is no relation between mask recognition and algorithm speedup



Experiments for Least Squares with 1-d ${\bf TV}$ Regularizer

Randomized Strata Descent

• Synthetic Least Squares problem with 1 - d **TV** regularizer

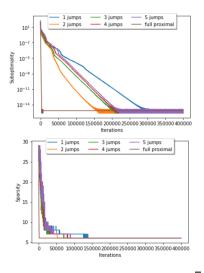
$$\min \frac{1}{2} \|Ax - b\|_2^2 + \lambda_1 \sum_{i=1}^{d-1} |x_i - x_{i+1}|$$

dimension $d = 30, \lambda_1 = 0.5$

- 10 machines (1CPU, 1GB) in a cluster
- Data divided uniformly

Analysis

- positive Identification works as expected
- negative Extremely big amount iterations for sparsified versions, does not correlate even with jumps' amount
- negative There is no relation between mask recognition and algorithm speedup



Randomized Strata Descent with Automatic Dimension Reduction

Master		Worker i
Initialize for k=1,p+1, do calculate sparsity structure of $x^k - S_k$ if $S_k \neq S_{k-p}$ then Generate new $\mathcal{P}, \mathcal{P}, \mathcal{Q}$ w.r.t to S_k and s-extra Send S_k to slave end if for 1=0,,p-1 do Receive y_i^{k+l-1} from workers $z^{k+l} = z^{k+l-1} - P_{k+l-1}(z^{k+l-1})$ $+ P_{k+l-1}(\bar{\mathcal{Q}}(x^{k+l-1})) + \sum_{i=1}^{M} \pi_i y_i^{k+l-1}$ $x^{k+l+1} = \operatorname{prox}_{\gamma g} (\mathcal{Q}^{-1}(z^{k+l}))$ Randomly select P_{k+l} Send x^{k+l+1} , P_{k+l} to workers end for end for	C O M U N I C A T I O N	for k=0, do if S_k recieved then Generate new $\mathcal{P}, \hat{\mathcal{P}}, \hat{\mathcal{Q}}$ w.r.t to S_k and s-extra end if Receive x^k, P_k $y_i^k = P_k \hat{\mathcal{Q}} \left(\gamma \nabla f_i(x^k) \right)$ Send y_i^k to master end for

Is it "coordinate descent"?

- no because we use adapted coordinate selection in gradient
- no because we don't need regularizer to be separable

Experiments for Least Squares with 1-d **TV** Regularizer

Randomized Strata Descent with Automatic Dimension Reduction

• Synthetic Least Squares problem with 1 - d **TV** regularizer

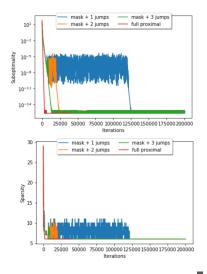
$$\min \frac{1}{2} \|Ax - b\|_2^2 + \lambda_1 \sum_{i=1}^{d-1} |x_i - x_{i+1}|$$

dimension $d = 30, \lambda_1 = 0.5$

- 10 machines (1CPU, 1GB) in a cluster
- Data divided uniformly

Analysis

positive Identification works as expected positive Small amount of iterations positive Mask recognition leads to fast convergence



Convergence Rate

Randomized Strata Descent with Automatic Dimension Reduction

Theorem

Let each f_i be L_i -smooth and μ_i -strongly convex. Then, for $\gamma \in (0, 2/(\mu + L)]$, and $L = \max\{L_i\}, \mu = \min\{\mu_i\}$

$$\mathbb{E}\left[\|x^k - x^\star\|_2^2\right] \le \left(1 - \frac{\lambda_{\min} \frac{2\gamma\mu L}{\mu + L}}{\mu + L}\right)^k \|x^0 - x^\star\|_2^2,$$

where λ_{\min} is minimal eigen value of $\bar{\mathcal{P}}$

Fixed stepsize same as in standard Proximal Gradient

Example: ℓ_1 regularizer

- $\lambda_{\min} = p_{\min}$, where p_{\min} is minimal probability for coordinate to be chosen
- **prox**_{γg} is separable *Q̄* diagonal matrix

 $\bar{\mathcal{Q}}$ could be skipped in the algorithm

Conclusion

Results

- Algorithm with automatic dimension reduction
- Importance of identification in sparsification

Future plans

- Asynchronous version
- Approximate computation of \bar{Q}
- Scarse communications

make less exchanges

• Non-strongly-convex functions (f_i)

Thank you!

