Identification-based first-order algorithms for distributed learning

Dmitry Grishchenko

M $\min_{x \in \mathbb{R}^n} \sum_{i=1}^n f_i(x) + r(x)$

In ML context

$$f_i(x) = \sum_{j \in S_i} \pi_i l_j(x)$$

In ML context

$$f_i(x) = \sum_{j \in S_i} \pi_i l_j(x)$$

 l_j – loss associated with j^{th} example $S_i - i^{\text{th}}$ set of examples π_i – proportion of examples in i^{th} set

Distribute It!

Earthlings

Distribute It!

Distribute It!

З

Distribute It! Centralized

Data proportions

3

What is a difference?

Parallel

Distributed

What is a difference?

Parallel

Distributed

Machines

	Parallel	Distributed
Machines	Single	Multiple

	Parallel	Distributed
Machines	Single	Multiple
Storage		

What is a difference?

	Parallel	Distributed
Machines	Single	Multiple
Storage	Limited	Unlimited

	Parallel	Distributed
Machines	Single	Multiple
Storage	Limited	Unlimited
Communication		

	Parallel	Distributed
Machines	Single	Multiple
Storage	Limited	Unlimited
Communication	Free	Bottleneck

What is a difference?

	Parallel	Distributed
Machines	Single	
Storage	Limited	Unlimited
Communication	Free	Bottleneck

Multiple

	Parallel	Distributed
Machines	Single	
Storage	Limited	Unlimited
Communication	Free	Bottleneck

	Parallel	Distributed
Machines	Single	
Storage	Limited	Unlimited
Communication	Free	Bottleneck

What is a difference?

Computations are cheaper than communications

A. - phone personalizes the model locally, based on user's usage

- A. phone personalizes the model locally, based on user's usage
- B. many users' updates are aggregated

- A. phone personalizes the model locally, based on user's usage
- B. many users' updates are aggregated
- C. consensus change to the shared model

- A. phone personalizes the model locally, based on user's usage
- B. many users' updates are aggregated
- C. consensus change to the shared model

As a result: a lot of updates, with cheap computations

- A. phone personalizes the model locally, based on user's usage
- B. many users' updates are aggregated
- C. consensus change to the shared model

Let's make communications cheaper!

- A. phone personalizes the model locally, based on user's usage
- B. many users' updates are aggregated
- C. consensus change to the shared model

- A. phone personalizes the model locally, based on user's usage
- B. many users' updates are aggregated
- C. consensus change to the shared model

- A. phone personalizes the model locally, based on user's usage
- B. many users' updates are aggregated
- C. consensus change to the shared model

The Size Is Important!

The Size Is Important!

Not so many fans

Not so many fans

Everyone can go to the stadium and watch the game

Not so many fans

Everyone can go to the stadium and watch the game

Everyone can go to the stadium and watch the game

A lot of fans

A lot of fans

Everyone can go to the stadium and watch the game

Need to make a ballot for the tickets

A lot of fans

Everyone can go to the stadium and watch the game

Need to make a <u>ballot</u> for the tickets

sparsification

Synchronous?

Drawbacks of synchronous algorithms

Synchronous?

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

Synchronous?

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

A lot of communications in one time

Master machine communicates with all machines in the same time

ASynchronous?

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

A lot of communications in one time

Master machine communicates with all machines in the same time

ASynchronous?

Drawbacks of synchronous algorithms

Wasting of time

All machines have to wait the moment, when everyone finishes

A lot of communications in one time

Master machine communicates with all machines in the same time

Let's kill 2 birds with one stone

$$x^{k+1} = \underset{\gamma g}{\operatorname{prox}} (x^k - \gamma \nabla f(x^k))$$

$$egin{aligned} x^{k+1} &= & \max_{\gamma g}(x^k - \gamma
abla f(x^k)) \ & ext{where} \quad & \max_{\gamma g}(x) \coloneqq & rgmin_u \left\{g(u) + rac{1}{2\gamma}\|u - x\|^2
ight\} \end{aligned}$$

$$egin{aligned} x^{k+1} &= & \max_{\gamma g}(x^k - \gamma
abla f(x^k)) \ & ext{where} \quad & \max_{\gamma g}(x) \coloneqq & rgmin_u \left\{g(u) + rac{1}{2\gamma}\|u - x\|^2
ight\} \end{aligned}$$

In synchronous case it will be the same

Each worker send its gradient and master calculate the weighted average

$$x^{k+1} = \mathop{\mathbf{prox}}_{\gamma g}(x^k - \gamma \nabla f(x^k))$$

where $\mathop{\mathbf{prox}}_{\gamma g}(x) \coloneqq \mathop{\mathrm{argmin}}_{u} \left\{ g(u) + \frac{1}{2\gamma} \|u - x\|^2 \right\}$

In synchronous case it will be the same

Each worker send its gradient and master calculate the weighted average

$$F(x) = \sum_{i=1}^{M} \pi_i f_i(x)$$

In synchronous case it will be the same

Each worker send its gradient and master calculate the weighted average

Gradient that master receive from worker is computed in one of previous iterate points

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

k - the number of updates master receive

 i^k - an agent, that communicated with master at time

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

k - the number of updates master receive

 i^k - an agent, that communicated with master at time

Let's define a worker *i* timeline

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

k - the number of updates master receive

 i^k - an agent, that communicated with master at time

Let's define a worker *i* timeline

 d_i^k - time elapsed from the last update

 D_i^k - the time of penultimate update

Gradient that master receive from worker is computed in one of previous iterate points

Let's define a master's timeline

k - the number of updates master receive

 i^k - an agent, that communicated with master at time

Let's define a worker *i* timeline

Mishchenko, K., Iutzeler, F., Malick, J., & Amini, M. R. (2018, July). A delay-tolerant proximal-gradient algorithm for distributed learning. In *International Conference on Machine Learning* (pp. 3584-3592).

If dimension is very big, it is very expansive to send full gradient

Mishchenko, K., Iutzeler, F., Malick, J., & Amini, M. R. (2018, July). A delay-tolerant proximal-gradient algorithm for distributed learning. In *International Conference on Machine Learning* (pp. 3584-3592).

If dimension is very big, it is very expansive to send full gradient

If regulariser is sparsity enforcing, no need to sparsify master -

Mishchenko, K., Iutzeler, F., Malick, J., & Amini, M. R. (2018, July). A delay-tolerant proximal-gradient algorithm for distributed learning. In *International Conference on Machine Learning* (pp. 3584-3592).

Fadili J., Malick J., Peyré G. Sensitivity analysis for mirror-stratifiable convex functions SIAM Journal on Optimization. - 2018. - T. 28. - №. 4. - C. 2975-3000.

worker

Sparsified Algorithm

Sparsified Algorithm

How to chose the sparsity mask?

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems SIAM Journal on Optimization. - 2012. - T. 22. - №. 2. - C. 341-362.

How to chose the sparsity mask?

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

OR . . .

Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems SIAM Journal on Optimization. - 2012. - T. 22. - №. 2. - C. 341-362.

1 wave - most loyal fans (the biggest amount of games visited)

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game Most loyal have probability 1, all the others much smaller

* - l_1 -regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection

* - l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection

1 - select all the coordinates that are in master's current iterate

* - l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with uniform probability

* - l₁-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with uniform probability

As a result, all the coordinates from the support of the final solution would be selected

Let's introduce our adaptive way of mask selection

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with uniform probability

As a result, all the coordinates from the support of the final solution would be selected Dimension reductions without loss of speed (but only from some <u>finite</u> moment of time)

Let's introduce our adaptive way of mask selection

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with uniform probability

As a result, all the coordinates from the support of the final solution would be selected Dimension reductions without loss of speed (but only from some <u>finite</u> moment of time) Theoretical result (for s.c. objective)

Grishchenko, D., Iutzeler, F., Malick, J., & Amini, M. R. (2018). Asynchronous Distributed Learning with Sparse Communications and Identification. *arXiv preprint arXiv:1812.03871*.

* - l1-regularizer enforces coordinate sparsity

Let's introduce our adaptive way of mask selection

- 1 select all the coordinates that are in master's current iterate
- 2 add some other coordinates with uniform probability

As a result, all the coordinates from the support of the final solution would be selected Dimension reductions without loss of speed (but only from some <u>finite</u> moment of time) Theoretical result (for s.c. objective)

$$\mathbb{E}\|x^{k} - x^{\star}\|^{2} \leq \left(1 - 2\frac{\gamma p\mu L}{\mu + L}\right)^{m} \max_{i=1,..,M} \|x_{i}^{0} - x_{i}^{\star}\|^{2}$$

where $k \in [k_m, k_{m+1})$ and $k_{m+1} = \min\{k : k - D_i^k \ge k_m \text{ for all } i\}$

PDF Adobe

Grishchenko, D., Iutzeler, F., Malick, J., & Amini, M. R. (2018). Asynchronous Distributed Learning with Sparse Communications and Identification. *arXiv preprint arXiv:1812.03871*.

* - l1-regularizer enforces coordinate sparsity

Numerical Experiments

Figure 1: Logistic regression for the rcv1 dataset: evolution of the time per iteration, wallclock time performance, suboptimality vs communication, and robustness of identification.

Thank You For Your Attention