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In ML context

filz) =) milj(x)

JES;



convex
L-smooth

min Y  fi(z) + r(z)

convex
non-smooth

filz) =) milj(x)
JES;

l; — loss associated with ™ example

S; — i*" set of examples
th

m; — proportion of examples in 7" set
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Parallel Distributed
Machines Single
Storage Limited Unlimited

Communication Free BOtt leneCk

Multiple
- o
Private data Phones = Machines

Computations are cheaper than communications
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A lot of fans —_— Need to make a ballot for the tickets

sparsification
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All machines have to wait the Master machine communicates with
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{ Receiving update J

®
A °®
e} [ ]
[ ] )
. [ ]
O
SLAVE i

(SLAvE 1 | ( ) (SLAVE M |
e0o (YY)
{ Thinking... J {Sending update J { Thinking... J




Back to Basics

Problems of the form mIiRn f ( + r(x)
S ‘




Back to Basics

Problems of the form min f
rEeR™

Call for

First-order proximal methods (for example Proximal Gradient Descent)



Back to Basics

Problems of the form min f
rEeR™

Call for _.

First-order proximal methods (for example Proximal Gradient Descent)

z** = prox(z® —yV f(z"))
Y9



Back to Basics

Problems of the form

Call for

First-order proximal methods (for example Proximal Gradient Descent)

z** = prox(z® —yV f(z"))
Y9

1
where prox(z) := argmin {g(u) + —||lu— :1:||2}
g u 2y



convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

"t = prox(a® — 1V f ("))
Yg

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average



convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

"t = prox(a® — 1V f ("))
Yg

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

F(x) = Z i fi ()



convex
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Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

Pt = prox(zF — AV f(z*))
Y9

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

F(x):szi(x) — P VF(x):Zmei(x)
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Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

d,’f - time elapsed from the last update

Df- the time of penultimate update

update
i = i(k) viewpoint ::O—o—@::::m::::m::::>
e A 9 @ T
k— DF =k - db
j # i(k) viewpoint 0 0 4 @ ——Q——F—— t'>
k =Dk k=" k HHe
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[ MASTER

T TF 1 4 AR
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z" < prox,,.(Z")

®
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]
[
SLAVE 1 (SLAVE i ) SLAVE M
Computation of S AV, (xk_df) Computation of
k—d¥ ¢ ! k—dk
V iz 4) Y Akex;'l__xi YY) V (@™ %)
in process. x; — x; + AF in process.

A delay-tolerant proximal-gradient algorithm for distributed learning.
Adobe In International Conference on Machine Learning (pp. 3584-3592).

?: Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).
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[ MASTER

T TF 1 4 AR
k —k
z" < prox,,.(Z")

SLAVE 1 EEaE i (SLAVE M

Computation of S VY, (xk—df) Computation of
k—d¥ ¢ k—dk

V iz 4) Y Akex;'l__xi YY) V (@™ %)
in process. x; — x; + AF in process.

If dimension is very big, it is very expansive to send full gradient

If regulariser is sparsity enforcing, no need to sparsify master ¢ worker

A delay-tolerant proximal-gradient algorithm for distributed learning.
Adobe In International Conference on Machine Learning (pp. 3584-3592).

?: Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

.3: Fadili J., Malick J., Peyre G. Sensitivity analysis for mirror-stratifiable convex functions

e SIAM Journal on Optimization. - 2018. - T. 28. - Ne. 4. - C. 2975-3000.
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Random uniform coordinate selection (Coordinate Descent with uniform probabilities)
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Back to Ballot

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

Most loyal have probability 1, all the others much smaller

It’s an example of identification from real world

13
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Let’s introduce our adaptive way of mask selection

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with uniform probability

Dimension reductions without loss of speed (but only from some finite moment of time)
Theoretical result (for s.c. objective)

L m
Blat — ot < (1-222) " max [l - ot
vt 1=1,..,

where k € [k, kmi1) and k1 = min {k k — Df > k,, for all z}

Asynchronous Distributed Learning with Sparse Communications and Identification.

i Grishchenko, D., lutzeler, F., Malick, J., & Amini, M. R. (2018).
aobe  arXiv preprint arXiv:1812.03871.
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Numerical Experiments
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Figure 1: Logistic regression for the rcvl dataset: evolution of the time per iteration, wallclock time performance,

suboptimality vs communication, and robustness of identification.
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