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lj � loss associated with jth example
Si � ith set of examples
⇡i � proportion of examples in ith set
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Private data Phones = Machines

Result
Computations are cheaper than communications
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The Size Is Important!

Not so many fans Everyone can go to the stadium and watch the game

A lot of fans Need to make a ballot for the tickets

sparsification

Need to make a ballot for the tickets
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ASynchronous?
Drawbacks of synchronous algorithms

Wasting of time A lot of communications in one time

All machines have to wait the 
 moment, when everyone finishes

Master machine communicates with 
all machines in the same time

Let’s kill 2 birds with one stone
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Non-sparsified Algorithm

Mishchenko, K., Iutzeler, F., Malick, J., & Amini, M. R. (2018, July).  
A delay-tolerant proximal-gradient algorithm for distributed learning.  
In International Conference on Machine Learning (pp. 3584-3592).

If dimension is very big, it is very expansive to send full gradient

If regulariser is sparsity enforcing, no need to sparsify master           worker

Fadili J., Malick J., Peyré G. Sensitivity analysis for mirror-stratifiable convex functions 
SIAM Journal on Optimization. – 2018. – Т. 28. – №. 4. – С. 2975-3000.
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Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems 
SIAM Journal on Optimization. – 2012. – Т. 22. – №. 2. – С. 341-362.

OR …

 12



 Back to Ballot

It’s an example of identification from real world

 13



 Back to Ballot
1 wave - most loyal fans (the biggest amount of games visited)

It’s an example of identification from real world

 13



 Back to Ballot
1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

It’s an example of identification from real world

 13



 Back to Ballot
1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

It’s an example of identification from real world

 13



 Back to Ballot
1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

Most loyal have probability 1, all the others much smaller

It’s an example of identification from real world
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