ldentification-based first-order
algorithms for distributed learning

Dmitry Grishchenko

Problem

Problem

In ML context

filz) =) milj(x)

JES;

convex
L-smooth

min Y fi(z) + r(z)

convex
non-smooth

filz) =) milj(x)
JES;

l; — loss associated with ™ example

S; — i*" set of examples
th

m; — proportion of examples in 7" set

Distribute It!

Distribute It!

Data proportions

Distribute It!

Data proportions

Distribute It! Centrallzed

Parallel or Distributed?

Parallel or Distributed?

What is a difference?

Parallel or Distributed?

What is a difference?

Parallel Distributed

Parallel or Distributed?

What is a difference?

Parallel Distributed

Machines

Parallel or Distributed?

What is a difference?

Parallel Distributed

Machines Single Multiple

Parallel or Distributed?

What is a difference?

Parallel Distributed

Machines Single Multiple

Storage

Parallel or Distributed?

What is a difference?

Parallel Distributed

Machines Single Multiple

Storage Limited Unlimited

Parallel or Distributed?

What is a difference?

Parallel Distributed
Machines Single Multiple
Storage Limited Unlimited

Communication

Parallel or Distributed?

What is a difference?

Parallel Distributed
Machines Single Multiple
Storage Limited Unlimited

Communication Free Bottleneck

Parallel or Distributed?

What is a difference?

Parallel
Machines Single
Storage Limited
Communication Free

Multiple

Distributed

Unlimited

Bottleneck

Parallel or Distributed?

What is a difference?

Parallel
Machines Single
Storage Limited
Communication Free

Multiple

Private data

Distributed

Unlimited

Bottleneck

Parallel or Distributed?

What is a difference?

Parallel Distributed
Machines Single
Storage Limited Unlimited
Communication Free Bottleneck
Multiple

Private data Phones = Machines

Parallel or Distributed?

What is a difference?

Parallel Distributed
Machines Single
Storage Limited Unlimited

Communication Free BOtt leneCk

Multiple

7\

Private data Phones = Machines

Parallel or Distributed?

What is a difference?

Parallel Distributed
Machines Single
Storage Limited Unlimited

Communication Free BOtt leneCk

Multiple
Private data Phones = Machines

Result

What is a difference?

Parallel Distributed
Machines Single
Storage Limited Unlimited

Communication Free BOtt leneCk

Multiple
- o
Private data Phones = Machines

Computations are cheaper than communications

Federated Learning

Federated Learning

N

L

/
«—®

o
|

B.

A. - phone personalizes the model locally, based on user’s usage

N

i

/
—le®

A,\@ oflellfelfofle] ——

B.
A. - phone personalizes the model locally, based on user’s usage

B. - many users' updates are aggregated

N

i

/
—le®

A,\@ oflellfelfofle] ——

B.
A. - phone personalizes the model locally, based on user’s usage

B. - many users' updates are aggregated

C. - consensus change to the shared model

N

[

/
—le®

A,\@ oflellfelfofle] ——

B.
A. - phone personalizes the model locally, based on user’s usage

B. - many users' updates are aggregated

C. - consensus change to the shared model

N

i

/
—le®

A,\@ oflellfelfofle] ——

B.
A. - phone personalizes the model locally, based on user’s usage

B. - many users' updates are aggregated

C. - consensus change to the shared model

Let’s make communications cheaper!

N

L

/
—le®

A,\@ oflellfelfofle] ——

B.
A. - phone personalizes the model locally, based on user’s usage

B. - many users' updates are aggregated

C. - consensus change to the shared model

Let’s make communications cheaper!

—

-

T~
Less often

N

L

/
—le®

A,\@ oflellfelfofle] ——

B.
A. - phone personalizes the model locally, based on user’s usage

B. - many users' updates are aggregated

C. - consensus change to the shared model

Let’s make communications cheaper!

—

a— —

—~ - .
Less often Smaller size

N

L

/
—le®

A,\@ oflellfelfofle] ——

B.
A. - phone personalizes the model locally, based on user’s usage

B. - many users' updates are aggregated

C. - consensus change to the shared model

Let’s make communications cheaper!

—

— —

T~ /
Less often Smaller size

The Size Is Important!

The Size Is Important!

The Size Is Important!

Not so many fans

The Size Is Important!

Not so many fans e—.e’ Everyone can go to the stadium and watch the game

The Size Is Important'

The Size Is Important'

A lot of fans

A lot of fans —_— Need to make a ballot for the tickets

diemrantt WATCh the game

A lot of fans —_— Need to make a ballot for the tickets

sparsification

Synchronous?

Synchronous?

Drawbacks of synchronous algorithms

Drawbacks of synchronous algorithms

/

-
Wasting of time

All machines have to wait the
moment, when everyone finishes

Drawbacks of synchronous algorithms

/

-
Wasting of time

All machines have to wait the
moment, when everyone finishes

N
A lot of communications in one time

Master machine communicates with
all machines in the same time

Drawbacks of synchronous algorithms

’

-
Wasting of time

All machines have to wait the
moment, when everyone finishes

N
A lot of communications in one time

Master machine communicates with
all machines in the same time

Drawbacks of synchronous algorithms

/
- N
Wasting of time A lot of communications in one time
All machines have to wait the Master machine communicates with
moment, when everyone finishes all machines in the same time

(MASTER)
{ Receiving update J

®
A °®
e} []
[])
. []
O
SLAVE i

(SLAvE 1 | () (SLAVE M |
e0o (YY)
{ Thinking... J {Sending update J { Thinking... J

Back to Basics

Problems of the form mIiRn f (+ r(x)
S ‘

Back to Basics

Problems of the form min f
rEeR™

Call for

First-order proximal methods (for example Proximal Gradient Descent)

Back to Basics

Problems of the form min f
rEeR™

Call for _.

First-order proximal methods (for example Proximal Gradient Descent)

z** = prox(z® —yV f(z"))
Y9

Back to Basics

Problems of the form

Call for

First-order proximal methods (for example Proximal Gradient Descent)

z** = prox(z® —yV f(z"))
Y9

1
where prox(z) := argmin {g(u) + —||lu— :1:||2}
g u 2y

convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

"t = prox(a® — 1V f ("))
Yg

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

"t = prox(a® — 1V f ("))
Yg

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

F(x) = Z i fi ()

convex
L-smooth

Problems of the form m]iRn f(x) + r(x)
TECIR™

convex
Call for non-smooth

Pt = prox(zF — AV f(z*))
Y9

1
where prox(x) := argmin {g(u) + —||u — :13||2}
v9 u 2y

Each worker send its gradient and master calculate the weighted average

F(x):szi(x) — P VF(x):Zmei(x)

Delays

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

df - time elapsed from the last update

Df- the time of penultimate update

10

Asynchronous updates bring some delays

Gradient that master receive from worker is computed in one of previous iterate points

k - the number of updates master receive

ik an agent, that communicated with master at time

d,’f - time elapsed from the last update

Df- the time of penultimate update

update
i = i(k) viewpoint ::O—o—@::::m::::m::::>
e A 9 @ T
k— DF =k - db
j # i(k) viewpoint 0 0 4 @ ——Q——F—— t'>
k =Dk k=" k HHe

10

Non-sparsified Algorithm

Non-sparsified Algorithm

[MASTER

T TF 1 4 AR
k —k
z" < prox,,.(Z")

®
' L
A o AF
([] °
]
[
SLAVE 1 (SLAVE i) SLAVE M
Computation of S AV, (xk_df) Computation of
k—d¥ ¢ ! k—dk
V iz 4) Y Akex;'l__xi YY) V (@™ %)
in process. x; — x; + AF in process.

A delay-tolerant proximal-gradient algorithm for distributed learning.
Adobe In International Conference on Machine Learning (pp. 3584-3592).

?: Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

11

Non-sparsified Algorithm

SLAVE 1

Computation of
Vfi(zkd)

in process.

[MASTER

TF — TFL 4 Ak

zk proxw(:ik)

[SLAVE i

vl = bl — V(b

A’“%:z:j—a:i
x; m; + AF

[SLAVE M

Computation of
V far (zF)

in process.

If dimension is very big, it is very expansive to send full gradient

A delay-tolerant proximal-gradient algorithm for distributed learning.

T Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

Adobe In International Conference on Machine Learning (pp. 3584-3592).

11

Non-sparsified Algorithm

[MASTER

T TF 1 4 AR
k —k
z" < prox,,.(Z")

SLAVE 1 EEaE i (SLAVE M

Computation of S VY, (xk—df) Computation of
k—d¥ ¢ k—dk

V iz 4) Y Akex;'l__xi YY) V (@™ %)
in process. x; — x; + AF in process.

If dimension is very big, it is very expansive to send full gradient

If regulariser is sparsity enforcing, no need to sparsify master ¢ worker

A delay-tolerant proximal-gradient algorithm for distributed learning.
Adobe In International Conference on Machine Learning (pp. 3584-3592).

?: Mishchenko, K., lutzeler, F., Malick, J., & Amini, M. R. (2018, July).

.3: Fadili J., Malick J., Peyre G. Sensitivity analysis for mirror-stratifiable convex functions

e SIAM Journal on Optimization. - 2018. - T. 28. - Ne. 4. - C. 2975-3000.

11

Sparsified Algorithm

SLAVE 1

Computation of
V fi(ahm)

in process.

[MASTER

¢ — T+ ﬂ-i[Ak]Sk—Df

a* « prox. . (z)

Choose sparsity mask S¥

. J

- S
P (]
T e k
Sk.o o. [A]Sk_Dg'c
(] S
o
SLAVE i | (SLAVE M
;U:F _ pk—df Y fi(xk—df) Computatiori of
AR 2t — oo V far(zF =)
k
T <z + [A]Sk_D;c in process.

12

Sparsified Algorithm

SLAVE 1

Computation of
V fi(ahm)

in process.

[MASTER

¢ T 4oy [Ak]sk_Df

a* « prox. . (z)

Choose sparsity mask S¥

J

12

o
s [Ak]sk—Di.c

(SLAVE M

Computation of
V far (k=)

in process.

Sparsified Algorithm

[MASTER YR
¢ T oy [Ak]sk_ Db =

a* « prox. . (z) /

Choose sparsity mask S¥ =

[
k * o
\ €T ° k 4
gk & [Blgen =
- ® e
[
SLAVE 1 SLAVE i (SLAVE M
Computation of zf = ph=di _ AV fi(xk—df) Computation of
gk k + gk
V fi(at) Y AT e o Y V far (=)
in process. zi < wi+[A]sk—Df in process.

12

Sparsified Algorithm

[MASTER A
7 4+ [Ak]sk_ Db -~
xk proxw(i’k) /
Choose sparsity mask S* =
) ’ -~
ko y
\ x ° ® k /
\ Sk’. s A]Sk—Diﬁ -
-) e
. .
SLAVE 1 SLAVE i (SLAVE M
Computatior; of zf = xkk—df — zv fi(ggl"f—déc) Computatiori of
VA | e A AT, cos | Thule)
in process. i = wi+ |]Sk—Df in process.

How to chose the sparsity mask?

12

[MASTER

¢ 7h 4 Wi[A’“]Sk_ch

z¥ « prox.,,.(z")

Choose sparsity mask S*

: [
kY °
T % o [AF] . Lk
Sk' (] ° S
. []
[
(SLAVE 1 ‘ SLAVE i (SLAVE M
Computationk of xf = g:kk_df — :ZVf i($k_d§) Computatiorllc of
k—d e k—d
V/i(a®) eoe A <_$Z.Ak i oo V(a5
in process. Ti = @i+ |]Sk—Di»“ in process.

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

i Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems
. SOIAM Journal on Optimization. - 2012. - T. 22. - Ne. 2. - C. 341-362.

12

[MASTER

¢ 7h 4 m[A’“]Sk_D,_C

z¥ « prox.,,.(z")

Choose sparsity mask S*

: [
kY °
T % o [AF] . Lk
Sk' (] ° S
. []
[
(SLAVE 1 ‘ SLAVE i (SLAVE M
Computationk of xf = g:kk_df — :ZVf z‘($k_di'c) Computatiorllc of
k—d e k—d
V/i(a®) eoe A <_xiAk i oo V(a5
in process. Ti = @i+ |]Sk—Di»“ in process.

Random uniform coordinate selection (Coordinate Descent with uniform probabilities)

i Nesterov Y. Efficiency of coordinate descent methods on huge-scale optimization problems
. SOIAM Journal on Optimization. - 2012. - T. 22. - Ne. 2. - C. 341-362.

12

Back to Ballot

It’s an example of identification from real world

13

1 wave - most loyal fans (the biggest amount of games visited)

It’s an example of identification from real world

13

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

It’s an example of identification from real world

13

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

It’s an example of identification from real world

13

Back to Ballot

1 wave - most loyal fans (the biggest amount of games visited)

2 wave (after cancellations) - uniformly random from all

This system gives a chance for everyone to watch a game

Most loyal have probability 1, all the others much smaller

It’s an example of identification from real world

13

l1-regularizer®

* - l1-regularizer enforces coordinate sparsity

14

Let’s introduce our adaptive way of mask selection

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection

1 - select all the coordinates that are in master’s current iterate

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with uniform probability

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with uniform probability

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with uniform probability

Dimension reductions without loss of speed (but only from some finite moment of time)

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with uniform probability

Dimension reductions without loss of speed (but only from some finite moment of time)

Theoretical result (for s.c. objective)

Asynchronous Distributed Learning with Sparse Communications and Identification.

i Grishchenko, D., lutzeler, F., Malick, J., & Amini, M. R. (2018).
aobe arXiv preprint arXiv:1812.03871.

* - l1-regularizer enforces coordinate sparsity

Let’s introduce our adaptive way of mask selection

1 - select all the coordinates that are in master’s current iterate

2 - add some other coordinates with uniform probability

Dimension reductions without loss of speed (but only from some finite moment of time)
Theoretical result (for s.c. objective)

L m
Blat — ot < (1-222) " max [l - ot
vt 1=1,..,

where k € [k, kmi1) and k1 = min {k k — Df > k,, for all z}

Asynchronous Distributed Learning with Sparse Communications and Identification.

i Grishchenko, D., lutzeler, F., Malick, J., & Amini, M. R. (2018).
aobe arXiv preprint arXiv:1812.03871.

* - l1-regularizer enforces coordinate sparsity

Numerical Experiments

time per iteration (s)

suboptimality

— DAve-PG

—O0— SPY 10%
——a— SPY-DR supp.+10%

0.4 |

=——A—— SPY-DR supp.+5 X |supp(mk)|

0 0.2 0.4 0.6 0.8

iterations

e e, ® My I O el il ® i it o\ D, ® s wetin.® ey = . ® il i i

DAve-PG

109
—O— SPY 10%

——aA—— SPY-DR supp.+10%

—#— SPY-DR supp.+5 X |supp(:ck)|

1073 |-

10— 6

0 500 1,000 1,500 2,000

time (s)

2,500

suboptimality

Isupp(z*)| (in percentage)

109

103

12

Al
A1\

T T

DAve-PG

—O— SPY 10%
——a— SPY-DR supp.+10%

—&#— SPY-DR supp.+5 X |supp(wk)|

1 2 3 4
. 8
number of entries exchanged 10
SPY-DR supp.+|supp.(:l:k)|
— Average run B
\.
N
| | | |
0 1,000 2,000 3,000 4,000 5,000

iteration

Figure 1: Logistic regression for the rcvl dataset: evolution of the time per iteration, wallclock time performance,

suboptimality vs communication, and robustness of identification.

15

