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Distributed setup

� one master machine

� M worker machines

� data stored locally
on worker machines

� communication cost
proportional to sending data size

Master

Worker 1

Worker 2
...

Worker M

data S1

data S2

...

data SM

Communication
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Distributed Learning

Global objective:

min
x2Rd

1

m

mX
j=1

‘j(x) + g(�; x)| {z }
g(x)

m examples individual losses (‘j)

empirical risk minimization regularizer g

Local data:

min
x2Rd

MX
i=1

�ifi(x)| {z }
convex, smooth

+ g(x)|{z}
convex, nonsmooth

M data blocks stored locally local functions (fi)

fi(x) = 1
jSij

P
j2Si

‘j(x)

proportion �i = jSij=m at i
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Review on Proximal Gradient

Problem:
min
x2Rn

f(x) + g(x);

� f(x) is differentiable, L�smooth and ��strongly convex

� g(x) is non-smooth but convex

Algorithm:

xk+1 = prox
g

(xk � rf(xk));

where proximity operator of g

prox
g

(x) := argmin
u

�
g(u) +

1

2
ku� xk2

�
Convergence result:

Let each f be L-smooth and �-strongly convex. Then, for  2 (0; 2=(�+ L)],

kxk � x?k2 � (1� �)kkx0 � x?k2;

for � = 2�L=(�+ L)
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Distributed Proximal Gradient

Problem:

min
x2Rd

MX
i=1

�ifi(x)| {z }
F (x)

+g(x)

Gradient property:

rF (x) =
MX
i=1

�irfi(x)

Algorithm: (on each iteration)

Master gathers local variables

xk+1 =
PM
i=1 πix

k+1=2
i = xk�γrF (x)

Master performs a proximity operation

xk+1
1 = � � � = xk+1

M = proxg

�
xk+1

�
Worker i updates local variable

x
k+1=2
i = xki � γrfi(x

k
i )

for all i = 1; ::;M

It’s exactly proximal gradient descent

k = number of master updates

Convergence rate:

Let each fi be Li-smooth and �i-strongly convex. Then, for  2 (0; 2=(�+L)] and
L = maxfLig; � = minf�ig,

kxk � x?k2 � (1� �)kkx0 � x?k2
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